Answer
Verified
453.6k+ views
Hint: The two consecutive numbers are in the form of $x$ and $x + 1$. The given sum of these two numbers is $365$ . This implies that $(x) + (x + 1) = 365$. Solve these linear equations to get the desired answer.
Complete step-by-step answer:
Given, the sum of two consecutive positive integers is 365.
Let the first positive be $x$ and the second positive integer will be $x + 1$
Given, the sum of two consecutive positive integers is 365.
$ \Rightarrow (x) + (x + 1) = 365$
on adding this,
$ \Rightarrow 2x + 1 = 365$
On solving this equation, we will get
$ \Rightarrow 2x = 364$
$ \Rightarrow x = 182$
The number is x i.e., 182 and x+1 i.e., 183
Therefore, two consecutive numbers are 182 and 183.
Note: This question can also be solved by trial and error method. You could solve this question a few different ways, and one of those is by the guess and check method. Start by taking two numbers, say 180 and 181, and add them together. You would find the answer to be 361. You then realize that you need 4 more to make 365.
You can choose higher numbers, such as 182 and 183 until you find the pair that works. This is called the trial and error method.
One more example of such a question is to find the numbers whose two consecutive integers have the sum of 35.
By the guess and check method. Start by taking two numbers, say 15 and 16, and add them together. You would find the answer to be 31. You then realize that you need 4 more to make 35.
You can choose higher numbers, such as 16 and 17 until you find the pair that works.
$ \Rightarrow 16 + 17 = 35$
The numbers are 16 and 17.
Complete step-by-step answer:
Given, the sum of two consecutive positive integers is 365.
Let the first positive be $x$ and the second positive integer will be $x + 1$
Given, the sum of two consecutive positive integers is 365.
$ \Rightarrow (x) + (x + 1) = 365$
on adding this,
$ \Rightarrow 2x + 1 = 365$
On solving this equation, we will get
$ \Rightarrow 2x = 364$
$ \Rightarrow x = 182$
The number is x i.e., 182 and x+1 i.e., 183
Therefore, two consecutive numbers are 182 and 183.
Note: This question can also be solved by trial and error method. You could solve this question a few different ways, and one of those is by the guess and check method. Start by taking two numbers, say 180 and 181, and add them together. You would find the answer to be 361. You then realize that you need 4 more to make 365.
You can choose higher numbers, such as 182 and 183 until you find the pair that works. This is called the trial and error method.
One more example of such a question is to find the numbers whose two consecutive integers have the sum of 35.
By the guess and check method. Start by taking two numbers, say 15 and 16, and add them together. You would find the answer to be 31. You then realize that you need 4 more to make 35.
You can choose higher numbers, such as 16 and 17 until you find the pair that works.
$ \Rightarrow 16 + 17 = 35$
The numbers are 16 and 17.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE