
Find three consecutives even numbers such that the sum of first and last term exceeds the second one by 10.
Answer
554.7k+ views
Hint: We first try to define three consecutives even numbers which has to be in their general form. We then try to apply the given condition and make a linear equation out of it. We solve the equation and get the value of the middle term to find the other terms also.
Complete step by step answer:
We first need to define three consecutives even numbers. We first take the middle even number as $2k,k\in \mathbb{N}$.
The previous and the next even numbers will be $2k-2$ and $2k+2$.
We have been given that the sum of the first and last term exceeds the second one by 10 which means the sum of $2k-2$ and $2k+2$ exceeds the 2k by 10.
Sum of $2k-2$ and $2k+2$ will be \[\left( 2k-2 \right)+\left( 2k+2 \right)=4k\]. This exceeds 2k by 10.
This gives us $4k=2k+10$. Solving the equation, we get
$\begin{align}
& 4k=2k+10 \\
& \Rightarrow 2k=10 \\
\end{align}$
So, the middle term is 10. The other two terms are $2k-2=10-2=8$ and $2k+2=10+2=12$.
Therefore, the terms are 8, 10, 12..
Note: Instead of taking the first term we tried to take the middle term as the main variable because the sum of first and last term eliminates the constants to get to the variable’s value easily. In the case of A.P. this type of assumption helps a lot to solve the problem easily.
Complete step by step answer:
We first need to define three consecutives even numbers. We first take the middle even number as $2k,k\in \mathbb{N}$.
The previous and the next even numbers will be $2k-2$ and $2k+2$.
We have been given that the sum of the first and last term exceeds the second one by 10 which means the sum of $2k-2$ and $2k+2$ exceeds the 2k by 10.
Sum of $2k-2$ and $2k+2$ will be \[\left( 2k-2 \right)+\left( 2k+2 \right)=4k\]. This exceeds 2k by 10.
This gives us $4k=2k+10$. Solving the equation, we get
$\begin{align}
& 4k=2k+10 \\
& \Rightarrow 2k=10 \\
\end{align}$
So, the middle term is 10. The other two terms are $2k-2=10-2=8$ and $2k+2=10+2=12$.
Therefore, the terms are 8, 10, 12..
Note: Instead of taking the first term we tried to take the middle term as the main variable because the sum of first and last term eliminates the constants to get to the variable’s value easily. In the case of A.P. this type of assumption helps a lot to solve the problem easily.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What is the difference between rai and mustard see class 8 biology CBSE


