
How do you find the zeros, real and imaginary, of $y = - {x^2} - 5x - 35$ using the quadratic formula?
Answer
547.2k+ views
Hint: First, compare the given quadratic equation to the standard quadratic equation and find the value of numbers $a$, $b$ and $c$ in the given equation. Then, substitute the values of $a$, $b$ and $c$ in the formula of discriminant and find the discriminant of the given equation. Finally, put the values of $a$, $b$ and $D$ in the roots of the quadratic equation formula and get the desired result.
Formula used: The quantity $D = {b^2} - 4ac$ is known as the discriminant of the equation $a{x^2} + bx + c = 0$ and its roots are given by
$x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ or $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step-by-step solution:
We know that an equation of the form $a{x^2} + bx + c = 0$, $a,b,c,x \in R$, is called a Real Quadratic Equation.
The numbers $a$, $b$ and $c$ are called the coefficients of the equation.
The quantity $D = {b^2} - 4ac$ is known as the discriminant of the equation $a{x^2} + bx + c = 0$ and its roots are given by
$x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ or $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Next, compare $ - {x^2} - 5x - 35 = 0$ quadratic equation to standard quadratic equation and find the value of numbers $a$, $b$ and $c$.
Comparing $ - {x^2} - 5x - 35 = 0$ with $a{x^2} + bx + c = 0$, we get
$a = - 1$, $b = - 5$ and $c = - 35$
Now, substitute the values of $a$, $b$ and $c$ in $D = {b^2} - 4ac$ and find the discriminant of the given equation.
$D = {\left( { - 5} \right)^2} - 4\left( { - 1} \right)\left( { - 35} \right)$
After simplifying the result, we get
$ \Rightarrow D = 25 - 140$
$ \Rightarrow D = - 115$
Which means the given equation has no real roots or has imaginary roots.
Now putting the values of $a$, $b$ and $D$ in $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$, we get
$x = \dfrac{{ - \left( { - 5} \right) \pm \sqrt {115} i}}{{2 \times \left( { - 1} \right)}}$
It can be written as
$ \Rightarrow x = - \dfrac{{5 \pm \sqrt {115} i}}{2}$
$ \Rightarrow x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$
So, $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ are roots/solutions of equation $ - {x^2} - 5x - 35 = 0$.
Therefore, the imaginary zeros of $y = - {x^2} - 5x - 35$ are $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$.
Note: We can check whether $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ are roots/solutions of equation $ - {x^2} - 5x - 35 = 0$ by putting the value of $x$ in given equation.
Putting $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ in LHS of equation $ - {x^2} - 5x - 35 = 0$.
\[{\text{LHS}} = - {\left( { - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i} \right)^2} - 5\left( { - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i} \right) - 35\]
On simplification, we get
\[ \Rightarrow {\text{LHS}} = - \dfrac{{25}}{4} + \dfrac{{115}}{4} - \dfrac{{5\sqrt {115} }}{2}i + \dfrac{{25}}{2} + \dfrac{{5\sqrt {115} }}{2}i - 35\]
\[ \Rightarrow {\text{LHS}} = 0\]
$\therefore {\text{LHS}} = {\text{RHS}}$
Thus, $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ is a solution of equation $ - {x^2} - 5x - 35 = 0$.
Putting $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ in LHS of equation $ - {x^2} - 5x - 35 = 0$.
\[{\text{LHS}} = - {\left( { - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i} \right)^2} - 5\left( { - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i} \right) - 35\]
On simplification, we get
\[ \Rightarrow {\text{LHS}} = - \dfrac{{25}}{4} + \dfrac{{115}}{4} + \dfrac{{5\sqrt {115} }}{2}i + \dfrac{{25}}{2} - \dfrac{{5\sqrt {115} }}{2}i - 35\]
\[ \Rightarrow {\text{LHS}} = 0\]
$\therefore {\text{LHS}} = {\text{RHS}}$
Thus, $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ is a solution of equation $ - {x^2} - 5x - 35 = 0$.
Therefore, the imaginary zeros of $y = - {x^2} - 5x - 35$ are $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$.
Formula used: The quantity $D = {b^2} - 4ac$ is known as the discriminant of the equation $a{x^2} + bx + c = 0$ and its roots are given by
$x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ or $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Complete step-by-step solution:
We know that an equation of the form $a{x^2} + bx + c = 0$, $a,b,c,x \in R$, is called a Real Quadratic Equation.
The numbers $a$, $b$ and $c$ are called the coefficients of the equation.
The quantity $D = {b^2} - 4ac$ is known as the discriminant of the equation $a{x^2} + bx + c = 0$ and its roots are given by
$x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$ or $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Next, compare $ - {x^2} - 5x - 35 = 0$ quadratic equation to standard quadratic equation and find the value of numbers $a$, $b$ and $c$.
Comparing $ - {x^2} - 5x - 35 = 0$ with $a{x^2} + bx + c = 0$, we get
$a = - 1$, $b = - 5$ and $c = - 35$
Now, substitute the values of $a$, $b$ and $c$ in $D = {b^2} - 4ac$ and find the discriminant of the given equation.
$D = {\left( { - 5} \right)^2} - 4\left( { - 1} \right)\left( { - 35} \right)$
After simplifying the result, we get
$ \Rightarrow D = 25 - 140$
$ \Rightarrow D = - 115$
Which means the given equation has no real roots or has imaginary roots.
Now putting the values of $a$, $b$ and $D$ in $x = \dfrac{{ - b \pm \sqrt D }}{{2a}}$, we get
$x = \dfrac{{ - \left( { - 5} \right) \pm \sqrt {115} i}}{{2 \times \left( { - 1} \right)}}$
It can be written as
$ \Rightarrow x = - \dfrac{{5 \pm \sqrt {115} i}}{2}$
$ \Rightarrow x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$
So, $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ are roots/solutions of equation $ - {x^2} - 5x - 35 = 0$.
Therefore, the imaginary zeros of $y = - {x^2} - 5x - 35$ are $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$.
Note: We can check whether $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ are roots/solutions of equation $ - {x^2} - 5x - 35 = 0$ by putting the value of $x$ in given equation.
Putting $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ in LHS of equation $ - {x^2} - 5x - 35 = 0$.
\[{\text{LHS}} = - {\left( { - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i} \right)^2} - 5\left( { - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i} \right) - 35\]
On simplification, we get
\[ \Rightarrow {\text{LHS}} = - \dfrac{{25}}{4} + \dfrac{{115}}{4} - \dfrac{{5\sqrt {115} }}{2}i + \dfrac{{25}}{2} + \dfrac{{5\sqrt {115} }}{2}i - 35\]
\[ \Rightarrow {\text{LHS}} = 0\]
$\therefore {\text{LHS}} = {\text{RHS}}$
Thus, $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ is a solution of equation $ - {x^2} - 5x - 35 = 0$.
Putting $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ in LHS of equation $ - {x^2} - 5x - 35 = 0$.
\[{\text{LHS}} = - {\left( { - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i} \right)^2} - 5\left( { - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i} \right) - 35\]
On simplification, we get
\[ \Rightarrow {\text{LHS}} = - \dfrac{{25}}{4} + \dfrac{{115}}{4} + \dfrac{{5\sqrt {115} }}{2}i + \dfrac{{25}}{2} - \dfrac{{5\sqrt {115} }}{2}i - 35\]
\[ \Rightarrow {\text{LHS}} = 0\]
$\therefore {\text{LHS}} = {\text{RHS}}$
Thus, $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$ is a solution of equation $ - {x^2} - 5x - 35 = 0$.
Therefore, the imaginary zeros of $y = - {x^2} - 5x - 35$ are $x = - \dfrac{5}{2} - \dfrac{{\sqrt {115} }}{2}i$ and $x = - \dfrac{5}{2} + \dfrac{{\sqrt {115} }}{2}i$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

