
Find the zero of the polynomial \[{{x}^{2}}-3x\].
Answer
580.5k+ views
Hint: Now we have to compare \[a{{x}^{2}}+bx+c=0\] with \[{{x}^{2}}-3x=0\]. We have to find the values of a, b and c. Let us assume the roots of equation \[a{{x}^{2}}+bx+c=0\] are \[\alpha \] and \[\beta \]. We know the roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] are equal to \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]. Let us assume\[\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a},\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}\]. Now we have to put the values of a, b and c in \[\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a},\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}\]. The values of \[\alpha \]and \[\beta \] give us the value of roots of\[a{{x}^{2}}+bx+c=0\].
Complete step-by-step answer:
Let us compare the quadratic equation \[a{{x}^{2}}+bx+c=0\] with \[{{x}^{2}}-3x=0\].
\[\begin{align}
& a=1......(1) \\
& b=-3....(2) \\
& c=0.....(3) \\
\end{align}\]
Let us assume the roots of equation \[a{{x}^{2}}+bx+c=0\] are \[\alpha \] and \[\beta \].
We know the roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] are equal to \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\].
Let us assume
\[\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a},\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}\]
Now let us assume the roots of a quadratic equation \[{{x}^{2}}-3x=0\] are \[\alpha \] and \[\beta \].
From equation (1), equation (2) and equation (3), we get
\[\begin{align}
& \Rightarrow \alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow \alpha =\dfrac{-(-3)+\sqrt{{{(-3)}^{2}}-4(1)(0)}}{2(1)} \\
& \Rightarrow \alpha =\dfrac{-(-3)+\sqrt{9-0}}{2(1)} \\
& \Rightarrow \alpha =\dfrac{-(-3)+\sqrt{9}}{2(1)} \\
& \Rightarrow \alpha =\dfrac{-(-3)+3}{2(1)} \\
& \Rightarrow \alpha =\dfrac{3+3}{2(1)} \\
& \Rightarrow \alpha =\dfrac{3+3}{2} \\
& \Rightarrow \alpha =\dfrac{6}{2} \\
& \Rightarrow \alpha =3.....(4) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow \beta =\dfrac{-(-3)-\sqrt{{{(-3)}^{2}}-4(1)(0)}}{2(1)} \\
& \Rightarrow \beta =\dfrac{-(-3)-\sqrt{9-0}}{2(1)} \\
& \Rightarrow \beta =\dfrac{-(-3)-\sqrt{9}}{2(1)} \\
& \Rightarrow \beta =\dfrac{-(-3)-3}{2(1)} \\
& \Rightarrow \beta =\dfrac{3-3}{2(1)} \\
& \Rightarrow \beta =\dfrac{3-3}{2} \\
& \Rightarrow \beta =\dfrac{0}{2} \\
& \Rightarrow \beta =0.....(5) \\
\end{align}\]
From equation (4) and equation (5), we get
The roots of \[{{x}^{2}}-3x=0\] are 0 and 3.
Note: This problem can be solved in an alternative manner.
Let us assume the roots of equation \[a{{x}^{2}}+bx+c=0\] are \[\alpha \] and \[\beta \], then we get
\[\begin{align}
& \alpha +\beta =\dfrac{-b}{a}......(1) \\
& \alpha \beta =\dfrac{c}{a}......(2) \\
\end{align}\]
Let us compare the quadratic equation \[a{{x}^{2}}+bx+c=0\] with \[{{x}^{2}}-3x=0\].
\[\begin{align}
& a=1......(3) \\
& b=-3....(4) \\
& c=0.....(5) \\
\end{align}\]
Now let us assume the roots of a quadratic equation \[{{x}^{2}}-3x=0\] are \[\alpha \] and \[\beta \].
Now we will substitute equation (3) and equation (4) in equation (5). Then we will get
\[\begin{align}
& \alpha +\beta =\dfrac{-(-3)}{1} \\
& \Rightarrow \alpha +\beta =3......(6) \\
& \alpha \beta =\dfrac{0}{1} \\
& \Rightarrow \alpha \beta =0......(7) \\
\end{align}\]
Let us assume \[\alpha =0\].
Now we will substitute \[\alpha =0\]in equation (6), we get
\[\begin{align}
& \Rightarrow 0+\beta =3 \\
& \Rightarrow \beta =3.......(8) \\
\end{align}\]
From equation (7) and equation (8), we get 0 and 3 are the roots of \[{{x}^{2}}-3x=0\].
Complete step-by-step answer:
Let us compare the quadratic equation \[a{{x}^{2}}+bx+c=0\] with \[{{x}^{2}}-3x=0\].
\[\begin{align}
& a=1......(1) \\
& b=-3....(2) \\
& c=0.....(3) \\
\end{align}\]
Let us assume the roots of equation \[a{{x}^{2}}+bx+c=0\] are \[\alpha \] and \[\beta \].
We know the roots of a quadratic equation \[a{{x}^{2}}+bx+c=0\] are equal to \[\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\].
Let us assume
\[\alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a},\beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a}\]
Now let us assume the roots of a quadratic equation \[{{x}^{2}}-3x=0\] are \[\alpha \] and \[\beta \].
From equation (1), equation (2) and equation (3), we get
\[\begin{align}
& \Rightarrow \alpha =\dfrac{-b+\sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow \alpha =\dfrac{-(-3)+\sqrt{{{(-3)}^{2}}-4(1)(0)}}{2(1)} \\
& \Rightarrow \alpha =\dfrac{-(-3)+\sqrt{9-0}}{2(1)} \\
& \Rightarrow \alpha =\dfrac{-(-3)+\sqrt{9}}{2(1)} \\
& \Rightarrow \alpha =\dfrac{-(-3)+3}{2(1)} \\
& \Rightarrow \alpha =\dfrac{3+3}{2(1)} \\
& \Rightarrow \alpha =\dfrac{3+3}{2} \\
& \Rightarrow \alpha =\dfrac{6}{2} \\
& \Rightarrow \alpha =3.....(4) \\
\end{align}\]
\[\begin{align}
& \Rightarrow \beta =\dfrac{-b-\sqrt{{{b}^{2}}-4ac}}{2a} \\
& \Rightarrow \beta =\dfrac{-(-3)-\sqrt{{{(-3)}^{2}}-4(1)(0)}}{2(1)} \\
& \Rightarrow \beta =\dfrac{-(-3)-\sqrt{9-0}}{2(1)} \\
& \Rightarrow \beta =\dfrac{-(-3)-\sqrt{9}}{2(1)} \\
& \Rightarrow \beta =\dfrac{-(-3)-3}{2(1)} \\
& \Rightarrow \beta =\dfrac{3-3}{2(1)} \\
& \Rightarrow \beta =\dfrac{3-3}{2} \\
& \Rightarrow \beta =\dfrac{0}{2} \\
& \Rightarrow \beta =0.....(5) \\
\end{align}\]
From equation (4) and equation (5), we get
The roots of \[{{x}^{2}}-3x=0\] are 0 and 3.
Note: This problem can be solved in an alternative manner.
Let us assume the roots of equation \[a{{x}^{2}}+bx+c=0\] are \[\alpha \] and \[\beta \], then we get
\[\begin{align}
& \alpha +\beta =\dfrac{-b}{a}......(1) \\
& \alpha \beta =\dfrac{c}{a}......(2) \\
\end{align}\]
Let us compare the quadratic equation \[a{{x}^{2}}+bx+c=0\] with \[{{x}^{2}}-3x=0\].
\[\begin{align}
& a=1......(3) \\
& b=-3....(4) \\
& c=0.....(5) \\
\end{align}\]
Now let us assume the roots of a quadratic equation \[{{x}^{2}}-3x=0\] are \[\alpha \] and \[\beta \].
Now we will substitute equation (3) and equation (4) in equation (5). Then we will get
\[\begin{align}
& \alpha +\beta =\dfrac{-(-3)}{1} \\
& \Rightarrow \alpha +\beta =3......(6) \\
& \alpha \beta =\dfrac{0}{1} \\
& \Rightarrow \alpha \beta =0......(7) \\
\end{align}\]
Let us assume \[\alpha =0\].
Now we will substitute \[\alpha =0\]in equation (6), we get
\[\begin{align}
& \Rightarrow 0+\beta =3 \\
& \Rightarrow \beta =3.......(8) \\
\end{align}\]
From equation (7) and equation (8), we get 0 and 3 are the roots of \[{{x}^{2}}-3x=0\].
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


