
Find the volume of the hemisphere of radius 3.5 cm.
Answer
530.1k+ views
Hint: Use the formula for calculation of volume of hemisphere which is \[\dfrac{2\pi }{3}{{r}^{3}}\] and substitute the given radius of hemisphere to find the volume.
We have a hemisphere whose radius is equal to \[3.5\] cm. We have to calculate the volume of the given hemisphere.
We know that if the radius of the hemisphere is \[r\] units, then the volume of hemisphere is given by \[\dfrac{2\pi }{3}{{r}^{3}}\] units. Radius is the distance from the centre point of a hemisphere to the circumference, an outside ring. The radius is always half of the diameter.
Substituting \[r=3.5\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}\].
Substituting \[\pi =\dfrac{22}{7}\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times {{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times \dfrac{35}{10}\times \dfrac{35}{10}\times \dfrac{35}{10}\].
Cancelling out like terms from numerator and denominator, we get volume of hemisphere \[=\dfrac{22}{3}\times \dfrac{35}{10}\times \dfrac{35}{10}=89.834c{{m}^{3}}\].
Hence, the volume of the hemisphere of radius \[3.5\] cm is equal to \[89.834c{{m}^{3}}\].
A hemisphere is a \[3-\] dimensional object that is half of a sphere. A sphere is defined as a set of points in \[3-\] dimension and all the points lying on the surface are equidistant from the centre. When a plane cuts across the sphere at the centre or equal parts, it forms a hemisphere. In general, a sphere makes exactly two hemispheres.
Volume is the amount of space inside of an object or the space that an object occupies.
Note: One must be careful about using the formula for calculating the volume of the hemisphere. The volume of the hemisphere is not the same as the volume of the sphere. Its volume is half of the volume of the sphere of the same radius.
We have a hemisphere whose radius is equal to \[3.5\] cm. We have to calculate the volume of the given hemisphere.
We know that if the radius of the hemisphere is \[r\] units, then the volume of hemisphere is given by \[\dfrac{2\pi }{3}{{r}^{3}}\] units. Radius is the distance from the centre point of a hemisphere to the circumference, an outside ring. The radius is always half of the diameter.
Substituting \[r=3.5\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}\].
Substituting \[\pi =\dfrac{22}{7}\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times {{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times \dfrac{35}{10}\times \dfrac{35}{10}\times \dfrac{35}{10}\].
Cancelling out like terms from numerator and denominator, we get volume of hemisphere \[=\dfrac{22}{3}\times \dfrac{35}{10}\times \dfrac{35}{10}=89.834c{{m}^{3}}\].
Hence, the volume of the hemisphere of radius \[3.5\] cm is equal to \[89.834c{{m}^{3}}\].
A hemisphere is a \[3-\] dimensional object that is half of a sphere. A sphere is defined as a set of points in \[3-\] dimension and all the points lying on the surface are equidistant from the centre. When a plane cuts across the sphere at the centre or equal parts, it forms a hemisphere. In general, a sphere makes exactly two hemispheres.
Volume is the amount of space inside of an object or the space that an object occupies.
Note: One must be careful about using the formula for calculating the volume of the hemisphere. The volume of the hemisphere is not the same as the volume of the sphere. Its volume is half of the volume of the sphere of the same radius.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Advantages and disadvantages of science

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

