# Find the volume of the hemisphere of radius 3.5 cm.

Answer

Verified

272.7k+ views

Hint: Use the formula for calculation of volume of hemisphere which is \[\dfrac{2\pi }{3}{{r}^{3}}\] and substitute the given radius of hemisphere to find the volume.

We have a hemisphere whose radius is equal to \[3.5\] cm. We have to calculate the volume of the given hemisphere.

We know that if the radius of the hemisphere is \[r\] units, then the volume of hemisphere is given by \[\dfrac{2\pi }{3}{{r}^{3}}\] units. Radius is the distance from the centre point of a hemisphere to the circumference, an outside ring. The radius is always half of the diameter.

Substituting \[r=3.5\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}\].

Substituting \[\pi =\dfrac{22}{7}\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times {{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times \dfrac{35}{10}\times \dfrac{35}{10}\times \dfrac{35}{10}\].

Cancelling out like terms from numerator and denominator, we get volume of hemisphere \[=\dfrac{22}{3}\times \dfrac{35}{10}\times \dfrac{35}{10}=89.834c{{m}^{3}}\].

Hence, the volume of the hemisphere of radius \[3.5\] cm is equal to \[89.834c{{m}^{3}}\].

A hemisphere is a \[3-\] dimensional object that is half of a sphere. A sphere is defined as a set of points in \[3-\] dimension and all the points lying on the surface are equidistant from the centre. When a plane cuts across the sphere at the centre or equal parts, it forms a hemisphere. In general, a sphere makes exactly two hemispheres.

Volume is the amount of space inside of an object or the space that an object occupies.

Note: One must be careful about using the formula for calculating the volume of the hemisphere. The volume of the hemisphere is not the same as the volume of the sphere. Its volume is half of the volume of the sphere of the same radius.

We have a hemisphere whose radius is equal to \[3.5\] cm. We have to calculate the volume of the given hemisphere.

We know that if the radius of the hemisphere is \[r\] units, then the volume of hemisphere is given by \[\dfrac{2\pi }{3}{{r}^{3}}\] units. Radius is the distance from the centre point of a hemisphere to the circumference, an outside ring. The radius is always half of the diameter.

Substituting \[r=3.5\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}\].

Substituting \[\pi =\dfrac{22}{7}\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times {{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times \dfrac{35}{10}\times \dfrac{35}{10}\times \dfrac{35}{10}\].

Cancelling out like terms from numerator and denominator, we get volume of hemisphere \[=\dfrac{22}{3}\times \dfrac{35}{10}\times \dfrac{35}{10}=89.834c{{m}^{3}}\].

Hence, the volume of the hemisphere of radius \[3.5\] cm is equal to \[89.834c{{m}^{3}}\].

A hemisphere is a \[3-\] dimensional object that is half of a sphere. A sphere is defined as a set of points in \[3-\] dimension and all the points lying on the surface are equidistant from the centre. When a plane cuts across the sphere at the centre or equal parts, it forms a hemisphere. In general, a sphere makes exactly two hemispheres.

Volume is the amount of space inside of an object or the space that an object occupies.

Note: One must be careful about using the formula for calculating the volume of the hemisphere. The volume of the hemisphere is not the same as the volume of the sphere. Its volume is half of the volume of the sphere of the same radius.

Last updated date: 26th Sep 2023

â€¢

Total views: 272.7k

â€¢

Views today: 5.72k

Recently Updated Pages

What do you mean by public facilities

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

What is the Full Form of ILO, UNICEF and UNESCO

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Why are resources distributed unequally over the e class 7 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

What is the past tense of read class 10 english CBSE