
Find the volume of the hemisphere of radius 3.5 cm.
Answer
522.3k+ views
Hint: Use the formula for calculation of volume of hemisphere which is \[\dfrac{2\pi }{3}{{r}^{3}}\] and substitute the given radius of hemisphere to find the volume.
We have a hemisphere whose radius is equal to \[3.5\] cm. We have to calculate the volume of the given hemisphere.
We know that if the radius of the hemisphere is \[r\] units, then the volume of hemisphere is given by \[\dfrac{2\pi }{3}{{r}^{3}}\] units. Radius is the distance from the centre point of a hemisphere to the circumference, an outside ring. The radius is always half of the diameter.
Substituting \[r=3.5\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}\].
Substituting \[\pi =\dfrac{22}{7}\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times {{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times \dfrac{35}{10}\times \dfrac{35}{10}\times \dfrac{35}{10}\].
Cancelling out like terms from numerator and denominator, we get volume of hemisphere \[=\dfrac{22}{3}\times \dfrac{35}{10}\times \dfrac{35}{10}=89.834c{{m}^{3}}\].
Hence, the volume of the hemisphere of radius \[3.5\] cm is equal to \[89.834c{{m}^{3}}\].
A hemisphere is a \[3-\] dimensional object that is half of a sphere. A sphere is defined as a set of points in \[3-\] dimension and all the points lying on the surface are equidistant from the centre. When a plane cuts across the sphere at the centre or equal parts, it forms a hemisphere. In general, a sphere makes exactly two hemispheres.
Volume is the amount of space inside of an object or the space that an object occupies.
Note: One must be careful about using the formula for calculating the volume of the hemisphere. The volume of the hemisphere is not the same as the volume of the sphere. Its volume is half of the volume of the sphere of the same radius.
We have a hemisphere whose radius is equal to \[3.5\] cm. We have to calculate the volume of the given hemisphere.
We know that if the radius of the hemisphere is \[r\] units, then the volume of hemisphere is given by \[\dfrac{2\pi }{3}{{r}^{3}}\] units. Radius is the distance from the centre point of a hemisphere to the circumference, an outside ring. The radius is always half of the diameter.
Substituting \[r=3.5\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}\].
Substituting \[\pi =\dfrac{22}{7}\] in the above formula, we get volume of hemisphere \[=\dfrac{2\pi }{3}{{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times {{\left( 3.5 \right)}^{3}}=\dfrac{2}{3}\times \dfrac{22}{7}\times \dfrac{35}{10}\times \dfrac{35}{10}\times \dfrac{35}{10}\].
Cancelling out like terms from numerator and denominator, we get volume of hemisphere \[=\dfrac{22}{3}\times \dfrac{35}{10}\times \dfrac{35}{10}=89.834c{{m}^{3}}\].
Hence, the volume of the hemisphere of radius \[3.5\] cm is equal to \[89.834c{{m}^{3}}\].
A hemisphere is a \[3-\] dimensional object that is half of a sphere. A sphere is defined as a set of points in \[3-\] dimension and all the points lying on the surface are equidistant from the centre. When a plane cuts across the sphere at the centre or equal parts, it forms a hemisphere. In general, a sphere makes exactly two hemispheres.
Volume is the amount of space inside of an object or the space that an object occupies.
Note: One must be careful about using the formula for calculating the volume of the hemisphere. The volume of the hemisphere is not the same as the volume of the sphere. Its volume is half of the volume of the sphere of the same radius.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Full form of STD, ISD and PCO

What are gulf countries and why they are called Gulf class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

