
Find the vector equation of the plane passing through three points with position vectors $\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\,$, $2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$ and $\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$. Also find the coordinates of the point of intersection of this plane and the line $\overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\lambda \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)$.
Answer
510k+ views
Hint: We start solving this problem by considering the given position vectors as $A,B,C$and then we find $\overrightarrow{AB}$ and $\overrightarrow{BC}$ using the formula $\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$. Then we find the vector that is normal to the plane passing through $A,B,C$ using the formula $\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{BC}$. Then we find the equation of the required plane passing through any one of the given points and normal to the obtained vector using the formula $\left( \overrightarrow{r}-\overrightarrow{a} \right).\overrightarrow{n}=0$. Then we solve the obtained vector equation and the given equation of line to get the value of $\lambda $. Hence, we get the coordinates of the required point.
Complete step by step answer:
Let us consider $A=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\,$, $B=2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$and $C=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$.
Now, let us consider the formula for line joining A and B, $\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$
By applying the above formula, we get,
$\begin{align}
& \Rightarrow \overrightarrow{AB}=\left( 2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)-\left( \overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right) \\
& \Rightarrow \overrightarrow{AB}=\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \\
& \Rightarrow \overrightarrow{BC}=\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)-\left( 2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \\
& \Rightarrow \overrightarrow{BC}=-\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{j}}\, \\
\end{align}$
Now, we find the vector normal to the plane passing through the points $\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\,$, $2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$ and $\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$.
Let us consider the formula, vector normal to the plane passing through the points $A,B,C$ is $\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{AC}$
By applying the above formula, we get,
$\begin{align}
& \overrightarrow{n}=\left| \begin{matrix}
\overset{\wedge }{\mathop{i}}\, & \overset{\wedge }{\mathop{j}}\, & \overset{\wedge }{\mathop{k}}\, \\
1 & -2 & 3 \\
-1 & 3 & 0 \\
\end{matrix} \right| \\
& \overrightarrow{n}=\overset{\wedge }{\mathop{i}}\,\left( -2\left( 0 \right)-3\left( 3 \right) \right)-\overset{\wedge }{\mathop{j}}\,\left( 1\left( 0 \right)-3\left( -1 \right) \right)+\overset{\wedge }{\mathop{k}}\,\left( 1\left( 3 \right)-\left( -2 \right)\left( -1 \right) \right) \\
& \overrightarrow{n}=-9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \\
\end{align}$
Now, let us consider another formula, that is,
The equation of the plane passing through the point $\overrightarrow{a}$ and is normal to the vector $\overrightarrow{n}$ is given by $\left( \overrightarrow{r}-\overrightarrow{a} \right).\overrightarrow{n}=0$
Now, by using the above formula, the equation of the plane passing through the point with position vector $\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\,$ and normal to the vector $-9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$is given by
$\begin{align}
& \left( \overrightarrow{r}-\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=0 \\
& \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)-\left( \overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=0 \\
& \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=\left( \overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \\
& \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-9-3-2 \\
& \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-14...............\left( 1 \right) \\
\end{align}$
Now, consider the given equation of the line, $\overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\lambda \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)...............\left( 2 \right)$
By solving the equations (1) and (2), we get,
$\begin{align}
& \left( 3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\lambda \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-14 \\
& \Rightarrow \left( \left( 3+2\lambda \right)\overset{\wedge }{\mathop{i}}\,+\left( -1-2\lambda \right)\overset{\wedge }{\mathop{j}}\,+\left( -1+\lambda \right)\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-14 \\
& \Rightarrow -27-18\lambda +3+6\lambda -1+\lambda =-14 \\
& \Rightarrow -11-11\lambda =0 \\
& \Rightarrow -11\lambda =11 \\
& \Rightarrow \lambda =-\dfrac{11}{11} \\
& \Rightarrow \lambda =-1 \\
\end{align}$
Now, by substituting the value of $\lambda $in equation (2), we get,
$\begin{align}
& \overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\left( -1 \right)\left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \\
& \Rightarrow \overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,-2\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\, \\
& \Rightarrow \overrightarrow{r}=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \\
\end{align}$
Hence, the coordinates of the required point are $\left( 1,1,-2 \right)$.
Note: There is a possibility of making a mistake by considering $\overrightarrow{AB}=\overrightarrow{A}-\overrightarrow{B}$ instead of $\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$, when finding the vector joining two vectors we should subtract the second one from the first. One might also make a mistake by considering $\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{BC}$ instead of $\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{AC}$ while solving the question. So, one should take care of which vector they are using while solving the problem.
Complete step by step answer:
Let us consider $A=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\,$, $B=2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$and $C=\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$.
Now, let us consider the formula for line joining A and B, $\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$
By applying the above formula, we get,
$\begin{align}
& \Rightarrow \overrightarrow{AB}=\left( 2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)-\left( \overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right) \\
& \Rightarrow \overrightarrow{AB}=\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+3\overset{\wedge }{\mathop{k}}\, \\
& \Rightarrow \overrightarrow{BC}=\left( \overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)-\left( 2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \\
& \Rightarrow \overrightarrow{BC}=-\overset{\wedge }{\mathop{i}}\,+3\overset{\wedge }{\mathop{j}}\, \\
\end{align}$
Now, we find the vector normal to the plane passing through the points $\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\,$, $2\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$ and $\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$.
Let us consider the formula, vector normal to the plane passing through the points $A,B,C$ is $\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{AC}$
By applying the above formula, we get,
$\begin{align}
& \overrightarrow{n}=\left| \begin{matrix}
\overset{\wedge }{\mathop{i}}\, & \overset{\wedge }{\mathop{j}}\, & \overset{\wedge }{\mathop{k}}\, \\
1 & -2 & 3 \\
-1 & 3 & 0 \\
\end{matrix} \right| \\
& \overrightarrow{n}=\overset{\wedge }{\mathop{i}}\,\left( -2\left( 0 \right)-3\left( 3 \right) \right)-\overset{\wedge }{\mathop{j}}\,\left( 1\left( 0 \right)-3\left( -1 \right) \right)+\overset{\wedge }{\mathop{k}}\,\left( 1\left( 3 \right)-\left( -2 \right)\left( -1 \right) \right) \\
& \overrightarrow{n}=-9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \\
\end{align}$
Now, let us consider another formula, that is,
The equation of the plane passing through the point $\overrightarrow{a}$ and is normal to the vector $\overrightarrow{n}$ is given by $\left( \overrightarrow{r}-\overrightarrow{a} \right).\overrightarrow{n}=0$
Now, by using the above formula, the equation of the plane passing through the point with position vector $\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\,$ and normal to the vector $-9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\,$is given by
$\begin{align}
& \left( \overrightarrow{r}-\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=0 \\
& \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)-\left( \overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=0 \\
& \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=\left( \overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \\
& \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-9-3-2 \\
& \Rightarrow \overrightarrow{r}.\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-14...............\left( 1 \right) \\
\end{align}$
Now, consider the given equation of the line, $\overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\lambda \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)...............\left( 2 \right)$
By solving the equations (1) and (2), we get,
$\begin{align}
& \left( 3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\lambda \left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-14 \\
& \Rightarrow \left( \left( 3+2\lambda \right)\overset{\wedge }{\mathop{i}}\,+\left( -1-2\lambda \right)\overset{\wedge }{\mathop{j}}\,+\left( -1+\lambda \right)\overset{\wedge }{\mathop{k}}\, \right).\left( -9\overset{\wedge }{\mathop{i}}\,-3\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right)=-14 \\
& \Rightarrow -27-18\lambda +3+6\lambda -1+\lambda =-14 \\
& \Rightarrow -11-11\lambda =0 \\
& \Rightarrow -11\lambda =11 \\
& \Rightarrow \lambda =-\dfrac{11}{11} \\
& \Rightarrow \lambda =-1 \\
\end{align}$
Now, by substituting the value of $\lambda $in equation (2), we get,
$\begin{align}
& \overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,+\left( -1 \right)\left( 2\overset{\wedge }{\mathop{i}}\,-2\overset{\wedge }{\mathop{j}}\,+\overset{\wedge }{\mathop{k}}\, \right) \\
& \Rightarrow \overrightarrow{r}=3\overset{\wedge }{\mathop{i}}\,-\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\,-2\overset{\wedge }{\mathop{i}}\,+2\overset{\wedge }{\mathop{j}}\,-\overset{\wedge }{\mathop{k}}\, \\
& \Rightarrow \overrightarrow{r}=\overset{\wedge }{\mathop{i}}\,+\overset{\wedge }{\mathop{j}}\,-2\overset{\wedge }{\mathop{k}}\, \\
\end{align}$
Hence, the coordinates of the required point are $\left( 1,1,-2 \right)$.
Note: There is a possibility of making a mistake by considering $\overrightarrow{AB}=\overrightarrow{A}-\overrightarrow{B}$ instead of $\overrightarrow{AB}=\overrightarrow{B}-\overrightarrow{A}$, when finding the vector joining two vectors we should subtract the second one from the first. One might also make a mistake by considering $\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{BC}$ instead of $\overrightarrow{n}=\overrightarrow{AB}\times \overrightarrow{AC}$ while solving the question. So, one should take care of which vector they are using while solving the problem.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Why should a magnesium ribbon be cleaned before burning class 12 chemistry CBSE

A renewable exhaustible natural resources is A Coal class 12 biology CBSE

Megasporangium is equivalent to a Embryo sac b Fruit class 12 biology CBSE

What is Zeises salt and ferrocene Explain with str class 12 chemistry CBSE

How to calculate power in series and parallel circ class 12 physics CBSE

Anal style is present in A Male cockroach B Female class 12 biology CBSE
