
Find the values of x if \[4\sin x.\sin 2x.\sin 4x=\sin 3x\].
Answer
606.9k+ views
Hint: Write 2x as \[(3x-x)\] and 4x as \[(3x+x)\] . Use the formula \[\sin 3x=3\sin x-4{{\sin }^{3}}x\] and \[\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B\] and transform the given equation as \[4\sin x.\sin (3x-x).\sin (3x+x)=\sin 3x\] and solve them further. General solution of \[\sin x=0\] is \[n\pi \] and \[\sin x=\sin \left( \pm \dfrac{\pi }{3} \right)\] is \[n\pi \pm \dfrac{\pi }{3}\] .
Complete step-by-step solution -
According to the question, we have the equation \[4\sin x.\sin 2x.\sin 4x=\sin 3x\] ……………(1)
Here, we have to find the values of x which satisfies the given equation.
First of all, we have to simplify the given equation.
We can write 2x as \[(3x-x)\] and 4x as \[(3x+x)\] .
Now, replacing 2x by \[(3x-x)\] and 4x by \[(3x+x)\] in the equation (1), we get
\[4\sin x.\sin 2x.\sin 4x=\sin 3x\]
\[\Rightarrow 4\sin x.\sin (3x-x)\sin (3x+x)=\sin 3x\] ………………………(2)
We know the formula, \[\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B\] .
Replacing A by 3x and B by x in the equation \[\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B\] , we get
\[\sin (3x-x)\sin (3x+x)={{\sin }^{2}}3x-{{\sin }^{2}}x\] ……………..(3)
Transforming equation (2) using equation (3), we get
\[\Rightarrow 4\sin x({{\sin }^{2}}3x-{{\sin }^{2}}x)=\sin 3x\]…………..(4)
Now, expanding \[\sin 3x\] , we get
\[\sin 3x=\sin (2x+x)=3\sin x-4{{\sin }^{3}}x\] ……………………(5)
Now, using equation (5) we can transform equation (4).
\[\begin{align}
& \Rightarrow 4\sin x({{\sin }^{2}}3x-{{\sin }^{2}}x)=3\sin x-4{{\sin }^{3}}x \\
& \Rightarrow 4\sin x.{{\sin }^{2}}3x-4{{\sin }^{3}}x=3\sin x-4{{\sin }^{3}}x \\
& \Rightarrow 4\sin x.{{\sin }^{2}}3x-3\sin x=0 \\
\end{align}\]
\[\Rightarrow \sin x(4{{\sin }^{2}}3x-3)=0\]
\[\sin x=0\] or \[4{{\sin }^{2}}3x-3=0\] .
Now, taking \[\sin x=0\] and we know that the general solution of \[\sin x=0\] is \[n\pi \].
\[\begin{align}
& \sin x=0 \\
& \Rightarrow x=n\pi \\
\end{align}\]
Now, taking \[4{{\sin }^{2}}3x-3=0\]
\[\begin{align}
& 4{{\sin }^{2}}3x-3=0 \\
& \Rightarrow \sin 3x=\pm \dfrac{\sqrt{3}}{2} \\
\end{align}\]
We know that \[\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}\] and \[\sin \left( -\dfrac{\pi }{3} \right)=-\dfrac{\sqrt{3}}{2}\] .
We have, \[\sin \left( \pm \dfrac{\pi }{3} \right)=\pm \dfrac{\sqrt{3}}{2}\] .
Now, solving
\[\sin 3x=\pm \dfrac{\sqrt{3}}{2}\]
\[\Rightarrow \sin 3x=\sin \left( \pm \dfrac{\pi }{3} \right)\]
\[\begin{align}
& \Rightarrow 3x=n\pi \pm \dfrac{\pi }{3} \\
& \Rightarrow x=\dfrac{n\pi }{3}\pm \dfrac{\pi }{9} \\
\end{align}\]
So, \[x=n\pi \] or \[x=\dfrac{n\pi }{3}\pm \dfrac{\pi }{9}\].
Note: In this question, one can try to simplify the equation \[4\sin x.\sin 2x.\sin 4x=\sin 3x\] using the formula \[2\sin A.\sin B=\cos (A-B)-\cos (A+B)\] . One can consider x as A and 4x as B and then apply this formula. But when we apply this formula then we will get cosine terms. It means we will have sine terms and cosine terms in the equation due to which our equation needs to be converted into either sine terms or cosine terms. While conversion, we will face complexity. So, don’t approach this question by this method as it leads to complexity.
Complete step-by-step solution -
According to the question, we have the equation \[4\sin x.\sin 2x.\sin 4x=\sin 3x\] ……………(1)
Here, we have to find the values of x which satisfies the given equation.
First of all, we have to simplify the given equation.
We can write 2x as \[(3x-x)\] and 4x as \[(3x+x)\] .
Now, replacing 2x by \[(3x-x)\] and 4x by \[(3x+x)\] in the equation (1), we get
\[4\sin x.\sin 2x.\sin 4x=\sin 3x\]
\[\Rightarrow 4\sin x.\sin (3x-x)\sin (3x+x)=\sin 3x\] ………………………(2)
We know the formula, \[\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B\] .
Replacing A by 3x and B by x in the equation \[\sin (A+B)\sin (A-B)={{\sin }^{2}}A-{{\sin }^{2}}B\] , we get
\[\sin (3x-x)\sin (3x+x)={{\sin }^{2}}3x-{{\sin }^{2}}x\] ……………..(3)
Transforming equation (2) using equation (3), we get
\[\Rightarrow 4\sin x({{\sin }^{2}}3x-{{\sin }^{2}}x)=\sin 3x\]…………..(4)
Now, expanding \[\sin 3x\] , we get
\[\sin 3x=\sin (2x+x)=3\sin x-4{{\sin }^{3}}x\] ……………………(5)
Now, using equation (5) we can transform equation (4).
\[\begin{align}
& \Rightarrow 4\sin x({{\sin }^{2}}3x-{{\sin }^{2}}x)=3\sin x-4{{\sin }^{3}}x \\
& \Rightarrow 4\sin x.{{\sin }^{2}}3x-4{{\sin }^{3}}x=3\sin x-4{{\sin }^{3}}x \\
& \Rightarrow 4\sin x.{{\sin }^{2}}3x-3\sin x=0 \\
\end{align}\]
\[\Rightarrow \sin x(4{{\sin }^{2}}3x-3)=0\]
\[\sin x=0\] or \[4{{\sin }^{2}}3x-3=0\] .
Now, taking \[\sin x=0\] and we know that the general solution of \[\sin x=0\] is \[n\pi \].
\[\begin{align}
& \sin x=0 \\
& \Rightarrow x=n\pi \\
\end{align}\]
Now, taking \[4{{\sin }^{2}}3x-3=0\]
\[\begin{align}
& 4{{\sin }^{2}}3x-3=0 \\
& \Rightarrow \sin 3x=\pm \dfrac{\sqrt{3}}{2} \\
\end{align}\]
We know that \[\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}\] and \[\sin \left( -\dfrac{\pi }{3} \right)=-\dfrac{\sqrt{3}}{2}\] .
We have, \[\sin \left( \pm \dfrac{\pi }{3} \right)=\pm \dfrac{\sqrt{3}}{2}\] .
Now, solving
\[\sin 3x=\pm \dfrac{\sqrt{3}}{2}\]
\[\Rightarrow \sin 3x=\sin \left( \pm \dfrac{\pi }{3} \right)\]
\[\begin{align}
& \Rightarrow 3x=n\pi \pm \dfrac{\pi }{3} \\
& \Rightarrow x=\dfrac{n\pi }{3}\pm \dfrac{\pi }{9} \\
\end{align}\]
So, \[x=n\pi \] or \[x=\dfrac{n\pi }{3}\pm \dfrac{\pi }{9}\].
Note: In this question, one can try to simplify the equation \[4\sin x.\sin 2x.\sin 4x=\sin 3x\] using the formula \[2\sin A.\sin B=\cos (A-B)-\cos (A+B)\] . One can consider x as A and 4x as B and then apply this formula. But when we apply this formula then we will get cosine terms. It means we will have sine terms and cosine terms in the equation due to which our equation needs to be converted into either sine terms or cosine terms. While conversion, we will face complexity. So, don’t approach this question by this method as it leads to complexity.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

