
Find the value(s) of x for which
$ y = {\left[ {x\left( {x - 2} \right)} \right]^2} $
is an increasing function.
Answer
575.4k+ views
Hint: To find the points or intervals where the given function is increasing, we need to follow the procedure:
Calculate $ \dfrac{{dy}}{{dx}} $ , equate it equal to zero to get the values of a.
The intervals where $ \dfrac{{dy}}{{dx}} > 0 $ , at these the function is increasing.
Apply:
$ \dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} $
Complete step-by-step answer:
We have,
$ y = {\left[ {x\left( {x - 2} \right)} \right]^2} $
Differentiating to the sides w.r.t x, we get
$ \dfrac{{dy}}{{dx}} = 2[x(x - 2)]\dfrac{d}{{dx}}[x(x - 2)] $
\[\left[ {{\text{Because }}\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}\dfrac{d}{{dx}}(x)} \right]\]
$ = 2({x^2} - 2x).(2x - 2) $
[Simplifying]
$ \dfrac{{dy}}{{dx}} = 4x\left( {x - 1} \right)\left( {x - 2} \right) $ ------(1)
Equating this to zero, we obtain:
$ \dfrac{{dy}}{{dx}} = 0 $
$ 4x\left( {x - 1} \right)\left( {x - 2} \right) = 0 $
The values of x are:
X=0, x=1 and x=2
Intervals can be written as:
$ \left( { - \infty ,0} \right),\left( {0,1} \right)\left( {1,2} \right),\left( {2,\infty } \right) $
Checking the points on the number line by substituting these in (1), we get:
$ \dfrac{{dy}}{{dx}} $ for intervals the value of x is:
(0,1) is positive
(1,2) is negative
(2,∞ is positive
Therefore, it can be said that the given function is increasing in the intervals
\[x \in \left( {0,1} \right) \cup \left( {2,\infty } \right)\]
Note: Always check on number line the substituted values of x in $ \dfrac{{dy}}{{dx}} $ so as to confirm the interval where function increases/decreases
Calculate $ \dfrac{{dy}}{{dx}} $ , equate it equal to zero to get the values of a.
The intervals where $ \dfrac{{dy}}{{dx}} > 0 $ , at these the function is increasing.
Apply:
$ \dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} $
Complete step-by-step answer:
We have,
$ y = {\left[ {x\left( {x - 2} \right)} \right]^2} $
Differentiating to the sides w.r.t x, we get
$ \dfrac{{dy}}{{dx}} = 2[x(x - 2)]\dfrac{d}{{dx}}[x(x - 2)] $
\[\left[ {{\text{Because }}\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}\dfrac{d}{{dx}}(x)} \right]\]
$ = 2({x^2} - 2x).(2x - 2) $
[Simplifying]
$ \dfrac{{dy}}{{dx}} = 4x\left( {x - 1} \right)\left( {x - 2} \right) $ ------(1)
Equating this to zero, we obtain:
$ \dfrac{{dy}}{{dx}} = 0 $
$ 4x\left( {x - 1} \right)\left( {x - 2} \right) = 0 $
The values of x are:
X=0, x=1 and x=2
Intervals can be written as:
$ \left( { - \infty ,0} \right),\left( {0,1} \right)\left( {1,2} \right),\left( {2,\infty } \right) $
Checking the points on the number line by substituting these in (1), we get:
$ \dfrac{{dy}}{{dx}} $ for intervals the value of x is:
(0,1) is positive
(1,2) is negative
(2,∞ is positive
Therefore, it can be said that the given function is increasing in the intervals
\[x \in \left( {0,1} \right) \cup \left( {2,\infty } \right)\]
Note: Always check on number line the substituted values of x in $ \dfrac{{dy}}{{dx}} $ so as to confirm the interval where function increases/decreases
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which animal has three hearts class 11 biology CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

Mention the basic forces in nature class 11 physics CBSE

What is centripetal acceleration Derive the expression class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

