
Find the value(s) of x for which
$ y = {\left[ {x\left( {x - 2} \right)} \right]^2} $
is an increasing function.
Answer
590.1k+ views
Hint: To find the points or intervals where the given function is increasing, we need to follow the procedure:
Calculate $ \dfrac{{dy}}{{dx}} $ , equate it equal to zero to get the values of a.
The intervals where $ \dfrac{{dy}}{{dx}} > 0 $ , at these the function is increasing.
Apply:
$ \dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} $
Complete step-by-step answer:
We have,
$ y = {\left[ {x\left( {x - 2} \right)} \right]^2} $
Differentiating to the sides w.r.t x, we get
$ \dfrac{{dy}}{{dx}} = 2[x(x - 2)]\dfrac{d}{{dx}}[x(x - 2)] $
\[\left[ {{\text{Because }}\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}\dfrac{d}{{dx}}(x)} \right]\]
$ = 2({x^2} - 2x).(2x - 2) $
[Simplifying]
$ \dfrac{{dy}}{{dx}} = 4x\left( {x - 1} \right)\left( {x - 2} \right) $ ------(1)
Equating this to zero, we obtain:
$ \dfrac{{dy}}{{dx}} = 0 $
$ 4x\left( {x - 1} \right)\left( {x - 2} \right) = 0 $
The values of x are:
X=0, x=1 and x=2
Intervals can be written as:
$ \left( { - \infty ,0} \right),\left( {0,1} \right)\left( {1,2} \right),\left( {2,\infty } \right) $
Checking the points on the number line by substituting these in (1), we get:
$ \dfrac{{dy}}{{dx}} $ for intervals the value of x is:
(0,1) is positive
(1,2) is negative
(2,∞ is positive
Therefore, it can be said that the given function is increasing in the intervals
\[x \in \left( {0,1} \right) \cup \left( {2,\infty } \right)\]
Note: Always check on number line the substituted values of x in $ \dfrac{{dy}}{{dx}} $ so as to confirm the interval where function increases/decreases
Calculate $ \dfrac{{dy}}{{dx}} $ , equate it equal to zero to get the values of a.
The intervals where $ \dfrac{{dy}}{{dx}} > 0 $ , at these the function is increasing.
Apply:
$ \dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} $
Complete step-by-step answer:
We have,
$ y = {\left[ {x\left( {x - 2} \right)} \right]^2} $
Differentiating to the sides w.r.t x, we get
$ \dfrac{{dy}}{{dx}} = 2[x(x - 2)]\dfrac{d}{{dx}}[x(x - 2)] $
\[\left[ {{\text{Because }}\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}\dfrac{d}{{dx}}(x)} \right]\]
$ = 2({x^2} - 2x).(2x - 2) $
[Simplifying]
$ \dfrac{{dy}}{{dx}} = 4x\left( {x - 1} \right)\left( {x - 2} \right) $ ------(1)
Equating this to zero, we obtain:
$ \dfrac{{dy}}{{dx}} = 0 $
$ 4x\left( {x - 1} \right)\left( {x - 2} \right) = 0 $
The values of x are:
X=0, x=1 and x=2
Intervals can be written as:
$ \left( { - \infty ,0} \right),\left( {0,1} \right)\left( {1,2} \right),\left( {2,\infty } \right) $
Checking the points on the number line by substituting these in (1), we get:
$ \dfrac{{dy}}{{dx}} $ for intervals the value of x is:
(0,1) is positive
(1,2) is negative
(2,∞ is positive
Therefore, it can be said that the given function is increasing in the intervals
\[x \in \left( {0,1} \right) \cup \left( {2,\infty } \right)\]
Note: Always check on number line the substituted values of x in $ \dfrac{{dy}}{{dx}} $ so as to confirm the interval where function increases/decreases
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

