
Find the value(s) of x for which
$ y = {\left[ {x\left( {x - 2} \right)} \right]^2} $
is an increasing function.
Answer
512.1k+ views
Hint: To find the points or intervals where the given function is increasing, we need to follow the procedure:
Calculate $ \dfrac{{dy}}{{dx}} $ , equate it equal to zero to get the values of a.
The intervals where $ \dfrac{{dy}}{{dx}} > 0 $ , at these the function is increasing.
Apply:
$ \dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} $
Complete step-by-step answer:
We have,
$ y = {\left[ {x\left( {x - 2} \right)} \right]^2} $
Differentiating to the sides w.r.t x, we get
$ \dfrac{{dy}}{{dx}} = 2[x(x - 2)]\dfrac{d}{{dx}}[x(x - 2)] $
\[\left[ {{\text{Because }}\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}\dfrac{d}{{dx}}(x)} \right]\]
$ = 2({x^2} - 2x).(2x - 2) $
[Simplifying]
$ \dfrac{{dy}}{{dx}} = 4x\left( {x - 1} \right)\left( {x - 2} \right) $ ------(1)
Equating this to zero, we obtain:
$ \dfrac{{dy}}{{dx}} = 0 $
$ 4x\left( {x - 1} \right)\left( {x - 2} \right) = 0 $
The values of x are:
X=0, x=1 and x=2
Intervals can be written as:
$ \left( { - \infty ,0} \right),\left( {0,1} \right)\left( {1,2} \right),\left( {2,\infty } \right) $
Checking the points on the number line by substituting these in (1), we get:
$ \dfrac{{dy}}{{dx}} $ for intervals the value of x is:
(0,1) is positive
(1,2) is negative
(2,∞ is positive
Therefore, it can be said that the given function is increasing in the intervals
\[x \in \left( {0,1} \right) \cup \left( {2,\infty } \right)\]
Note: Always check on number line the substituted values of x in $ \dfrac{{dy}}{{dx}} $ so as to confirm the interval where function increases/decreases
Calculate $ \dfrac{{dy}}{{dx}} $ , equate it equal to zero to get the values of a.
The intervals where $ \dfrac{{dy}}{{dx}} > 0 $ , at these the function is increasing.
Apply:
$ \dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}} $
Complete step-by-step answer:
We have,
$ y = {\left[ {x\left( {x - 2} \right)} \right]^2} $
Differentiating to the sides w.r.t x, we get
$ \dfrac{{dy}}{{dx}} = 2[x(x - 2)]\dfrac{d}{{dx}}[x(x - 2)] $
\[\left[ {{\text{Because }}\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}\dfrac{d}{{dx}}(x)} \right]\]
$ = 2({x^2} - 2x).(2x - 2) $
[Simplifying]
$ \dfrac{{dy}}{{dx}} = 4x\left( {x - 1} \right)\left( {x - 2} \right) $ ------(1)
Equating this to zero, we obtain:
$ \dfrac{{dy}}{{dx}} = 0 $
$ 4x\left( {x - 1} \right)\left( {x - 2} \right) = 0 $
The values of x are:
X=0, x=1 and x=2
Intervals can be written as:
$ \left( { - \infty ,0} \right),\left( {0,1} \right)\left( {1,2} \right),\left( {2,\infty } \right) $
Checking the points on the number line by substituting these in (1), we get:

$ \dfrac{{dy}}{{dx}} $ for intervals the value of x is:
(0,1) is positive
(1,2) is negative
(2,∞ is positive
Therefore, it can be said that the given function is increasing in the intervals
\[x \in \left( {0,1} \right) \cup \left( {2,\infty } \right)\]
Note: Always check on number line the substituted values of x in $ \dfrac{{dy}}{{dx}} $ so as to confirm the interval where function increases/decreases
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE
