
Find the values of $\sin \left( \dfrac{x}{2} \right)$ , $\cos \left( \dfrac{x}{2} \right)$ and $\tan \left( \dfrac{x}{2} \right)$ if
$\sin \left( x \right)=\dfrac{1}{4}$ And x is in the second quadrant.
Answer
599.7k+ views
Hint: In this question, we are given the value of sine of x of the angle and the quadrant in which the angle x lies. Therefore, using the definition of $\sin \left( \dfrac{x}{2} \right)$ , and other trigonometric formulas, we can obtain the values of $\sin \left( \dfrac{x}{2} \right)$ , $\cos \left( \dfrac{x}{2} \right)$ and $\tan \left( \dfrac{x}{2} \right)$ by solving the corresponding trigonometric equations.
Complete step-by-step solution -
In this given question, we are asked to find the value of $\sin \left( \dfrac{x}{2} \right)$ , $\cos \left( \dfrac{x}{2} \right)$ and $\tan \left( \dfrac{x}{2} \right)$ if
$\sin \left( x \right)=\dfrac{1}{4}$ And x is in the second quadrant.
We know that for any angle a,
${{\cos }^{2}}a=1-{{\sin }^{2}}a........(1.1)$
Therefore, taking $a=x$ in equation (1.1) and using the given value of \[sin\left( x \right)\] , we obtain
$\begin{align}
& {{\cos }^{2}}x=1-{{\sin }^{2}}x=1-{{\left( \dfrac{1}{4} \right)}^{2}}=\dfrac{15}{16} \\
& \Rightarrow \cos x=\pm \sqrt{\dfrac{15}{16}}.................(1.2) \\
\end{align}$
However, as x lies in the second quadrant, the value of \[cos\left( x \right)\]should be negative as shown in the figure below, thus the value of \[cos\left( x \right)\] should be equal to $-\sqrt{\dfrac{15}{16}}=-\dfrac{\sqrt{15}}{4}$ ………………(1.3)
Now, we also know that for any angle $\theta $ ,
$\sin \left( \theta \right)=\sqrt{\dfrac{1-\cos \left( 2\theta \right)}{2}}.........................(1.4)$
Therefore, using $\theta =\dfrac{x}{2}$ in equation (1.4), and using the value of $\cos 2\theta =\cos x$ from (1.3), we obtain
$\sin \left( \dfrac{x}{2} \right)=\sqrt{\dfrac{1-\cos \left( 2\times \dfrac{x}{2} \right)}{2}=}\sqrt{\dfrac{1+\dfrac{\sqrt{15}}{4}}{2}}=\sqrt{\dfrac{4+\sqrt{15}}{8}}.........................(1.5)$
Again, as x lies in the second quadrant, $\dfrac{\pi }{2}Again using equation (1.1) and (1.5), we obtain
$\begin{align}
& {{\cos }^{2}}\left( \dfrac{x}{2} \right)=1-{{\sin }^{2}}\left( \dfrac{x}{2} \right)=1-\left( \dfrac{4+\sqrt{15}}{8} \right)=\dfrac{4-\sqrt{15}}{8} \\
& \Rightarrow \cos \left( \dfrac{x}{2} \right)=\sqrt{\dfrac{4-\sqrt{15}}{8}}........................(1.7) \\
\end{align}$
The value of $\cos \left( \dfrac{x}{2} \right)$ in equation 1.7 should be taken as positive as explained in (1.6).
Again the tangent is defined as
$\tan \left( a \right)=\dfrac{\sin a}{\cos a}$
For any angle a, using (1.5) and (1.7) as
\[\begin{align}
& \tan \left( \dfrac{x}{2} \right)=\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)}=\dfrac{\sqrt{\dfrac{4+\sqrt{15}}{8}}}{\sqrt{\dfrac{4-\sqrt{15}}{8}}}=\sqrt{\dfrac{4+\sqrt{15}}{4-\sqrt{15}}}= \\
& =\sqrt{\dfrac{\left( 4+\sqrt{15} \right)\left( 4+\sqrt{15} \right)}{\left( 4-\sqrt{15} \right)\left( 4+\sqrt{15} \right)}}=\sqrt{\dfrac{{{\left( 4+\sqrt{15} \right)}^{2}}}{{{4}^{2}}-{{\left( \sqrt{15} \right)}^{2}}}}=\sqrt{\dfrac{{{\left( 4+\sqrt{15} \right)}^{2}}}{16-15}}=4+\sqrt{15}............(1.8) \\
\end{align}\]
Therefore, form equations (1.5), (1.7) and (1.8), we obtain the answer as
$\sin \left( \dfrac{x}{2} \right)=\sqrt{\dfrac{4+\sqrt{15}}{8}},\cos \left( \dfrac{x}{2} \right)=\sqrt{\dfrac{4-\sqrt{15}}{8},}\tan \left( \dfrac{x}{2} \right)=4+\sqrt{15}$
which is the required answer to this question.
Note: We could also have found tan(x) by using $\tan (x)=\dfrac{\sin x}{\cos x}$ and then found $\tan \left( \dfrac{x}{2} \right)$ by using the identity $\tan \left( x \right)=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}$ and from there we could have found $\sin \left( \dfrac{x}{2} \right)$ and $\cos \left( \dfrac{x}{2} \right)$ by using other trigonometric identities. However, the answer would have remained the same as found out in the solution above.
Complete step-by-step solution -
In this given question, we are asked to find the value of $\sin \left( \dfrac{x}{2} \right)$ , $\cos \left( \dfrac{x}{2} \right)$ and $\tan \left( \dfrac{x}{2} \right)$ if
$\sin \left( x \right)=\dfrac{1}{4}$ And x is in the second quadrant.
We know that for any angle a,
${{\cos }^{2}}a=1-{{\sin }^{2}}a........(1.1)$
Therefore, taking $a=x$ in equation (1.1) and using the given value of \[sin\left( x \right)\] , we obtain
$\begin{align}
& {{\cos }^{2}}x=1-{{\sin }^{2}}x=1-{{\left( \dfrac{1}{4} \right)}^{2}}=\dfrac{15}{16} \\
& \Rightarrow \cos x=\pm \sqrt{\dfrac{15}{16}}.................(1.2) \\
\end{align}$
However, as x lies in the second quadrant, the value of \[cos\left( x \right)\]should be negative as shown in the figure below, thus the value of \[cos\left( x \right)\] should be equal to $-\sqrt{\dfrac{15}{16}}=-\dfrac{\sqrt{15}}{4}$ ………………(1.3)
Now, we also know that for any angle $\theta $ ,
$\sin \left( \theta \right)=\sqrt{\dfrac{1-\cos \left( 2\theta \right)}{2}}.........................(1.4)$
Therefore, using $\theta =\dfrac{x}{2}$ in equation (1.4), and using the value of $\cos 2\theta =\cos x$ from (1.3), we obtain
$\sin \left( \dfrac{x}{2} \right)=\sqrt{\dfrac{1-\cos \left( 2\times \dfrac{x}{2} \right)}{2}=}\sqrt{\dfrac{1+\dfrac{\sqrt{15}}{4}}{2}}=\sqrt{\dfrac{4+\sqrt{15}}{8}}.........................(1.5)$
Again, as x lies in the second quadrant, $\dfrac{\pi }{2}
$\begin{align}
& {{\cos }^{2}}\left( \dfrac{x}{2} \right)=1-{{\sin }^{2}}\left( \dfrac{x}{2} \right)=1-\left( \dfrac{4+\sqrt{15}}{8} \right)=\dfrac{4-\sqrt{15}}{8} \\
& \Rightarrow \cos \left( \dfrac{x}{2} \right)=\sqrt{\dfrac{4-\sqrt{15}}{8}}........................(1.7) \\
\end{align}$
The value of $\cos \left( \dfrac{x}{2} \right)$ in equation 1.7 should be taken as positive as explained in (1.6).
Again the tangent is defined as
$\tan \left( a \right)=\dfrac{\sin a}{\cos a}$
For any angle a, using (1.5) and (1.7) as
\[\begin{align}
& \tan \left( \dfrac{x}{2} \right)=\dfrac{\sin \left( \dfrac{x}{2} \right)}{\cos \left( \dfrac{x}{2} \right)}=\dfrac{\sqrt{\dfrac{4+\sqrt{15}}{8}}}{\sqrt{\dfrac{4-\sqrt{15}}{8}}}=\sqrt{\dfrac{4+\sqrt{15}}{4-\sqrt{15}}}= \\
& =\sqrt{\dfrac{\left( 4+\sqrt{15} \right)\left( 4+\sqrt{15} \right)}{\left( 4-\sqrt{15} \right)\left( 4+\sqrt{15} \right)}}=\sqrt{\dfrac{{{\left( 4+\sqrt{15} \right)}^{2}}}{{{4}^{2}}-{{\left( \sqrt{15} \right)}^{2}}}}=\sqrt{\dfrac{{{\left( 4+\sqrt{15} \right)}^{2}}}{16-15}}=4+\sqrt{15}............(1.8) \\
\end{align}\]
Therefore, form equations (1.5), (1.7) and (1.8), we obtain the answer as
$\sin \left( \dfrac{x}{2} \right)=\sqrt{\dfrac{4+\sqrt{15}}{8}},\cos \left( \dfrac{x}{2} \right)=\sqrt{\dfrac{4-\sqrt{15}}{8},}\tan \left( \dfrac{x}{2} \right)=4+\sqrt{15}$
which is the required answer to this question.
Note: We could also have found tan(x) by using $\tan (x)=\dfrac{\sin x}{\cos x}$ and then found $\tan \left( \dfrac{x}{2} \right)$ by using the identity $\tan \left( x \right)=\dfrac{2\tan \left( \dfrac{x}{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{x}{2} \right)}$ and from there we could have found $\sin \left( \dfrac{x}{2} \right)$ and $\cos \left( \dfrac{x}{2} \right)$ by using other trigonometric identities. However, the answer would have remained the same as found out in the solution above.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

