
Find the values of
i) $\sin 15^\circ $ ii) $\cos 75^\circ $ iii) $\tan 105^\circ $
iv) $\cot 225^\circ $
Answer
602.1k+ views
Hint: To solve this question we will use the identities of $\sin (A + B)$ and $\cos (A + B)$. Also, we will use the value of trigonometric functions at $30^\circ $, $45^\circ $, etc after converting the given angles in the known angles.
Complete step-by-step answer:
Now, we will first find the value of $\sin 15^\circ $. Now, $\sin 15^\circ $ can be written as $\sin 15^\circ = \sin (45^\circ - 30^\circ )$
Now, we will use the identity of $\sin (A + B)$. From trigonometry, we have
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
Similarly, from the above identity, the value of $\sin (A - B)$ can be written as,
$\sin (A - B) = \sin A\cos B - \cos A\sin B$
So, $\sin 15^\circ = \sin (45^\circ - 30^\circ )$ = $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ $
Applying values of trigonometric functions at $30^\circ $ and $45^\circ $, we get
$\sin 15^\circ = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
So, $\sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now, we will use the identity $\cos (A + B) = \cos A\cos B - \sin A\sin B$ to find the value of $\cos 75^\circ $.
Now, $\cos 75^\circ $ = $\cos (45^\circ + 30^\circ )$ = $\cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ $
$\cos 75^\circ = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
Therefore, $\cos 75^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now, $\tan (A + B) = \dfrac{{\sin (A + B)}}{{\cos (A + B)}}$
So, $\tan 105^\circ = \tan (60^\circ + 45^\circ ) = \dfrac{{\sin (60^\circ + 45^\circ )}}{{\cos (60^\circ + 45^\circ )}}$
$\tan 105^\circ = \dfrac{{\dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }}}}$ = $\dfrac{{\sqrt 3 + 1}}{{1 - \sqrt 3 }}$
$\tan 105^\circ = - (\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}})$
Now, $\cot 225^\circ $ can be written as $\cot (180^\circ + 45^\circ )$, so it lies in the third quadrant . So, we get
$\cot 225^\circ = \cot 45^\circ $
Now, we will use the value of cot x at $45^\circ $. As, $\cot 45^\circ = 1$
Therefore, $\cot 225^\circ = 1$
So, $\sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
$\cos 75^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
$\tan 105^\circ = - (\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}})$
$\cot 225^\circ = 1$
Note: Whenever we come up with such types of questions, we will use the properties of trigonometry. Such questions can be easily solved when we remember the term Add Coffee To Sugar which represents all, sin, tan and cos. This term shows in which quadrant which function remains positive. For example, in the first quadrant, all functions are positive, in the second quadrant, only sin and cosec are positive and so on. This is used in almost every problem and helps in solving difficult problems easily. Also, we have used the identities of $\sin (A + B)$ and $\cos (A + B)$in this question. These identities are basic identities and all other identities can be derived from them.
Complete step-by-step answer:
Now, we will first find the value of $\sin 15^\circ $. Now, $\sin 15^\circ $ can be written as $\sin 15^\circ = \sin (45^\circ - 30^\circ )$
Now, we will use the identity of $\sin (A + B)$. From trigonometry, we have
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
Similarly, from the above identity, the value of $\sin (A - B)$ can be written as,
$\sin (A - B) = \sin A\cos B - \cos A\sin B$
So, $\sin 15^\circ = \sin (45^\circ - 30^\circ )$ = $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ $
Applying values of trigonometric functions at $30^\circ $ and $45^\circ $, we get
$\sin 15^\circ = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
So, $\sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now, we will use the identity $\cos (A + B) = \cos A\cos B - \sin A\sin B$ to find the value of $\cos 75^\circ $.
Now, $\cos 75^\circ $ = $\cos (45^\circ + 30^\circ )$ = $\cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ $
$\cos 75^\circ = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
Therefore, $\cos 75^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now, $\tan (A + B) = \dfrac{{\sin (A + B)}}{{\cos (A + B)}}$
So, $\tan 105^\circ = \tan (60^\circ + 45^\circ ) = \dfrac{{\sin (60^\circ + 45^\circ )}}{{\cos (60^\circ + 45^\circ )}}$
$\tan 105^\circ = \dfrac{{\dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }}}}$ = $\dfrac{{\sqrt 3 + 1}}{{1 - \sqrt 3 }}$
$\tan 105^\circ = - (\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}})$
Now, $\cot 225^\circ $ can be written as $\cot (180^\circ + 45^\circ )$, so it lies in the third quadrant . So, we get
$\cot 225^\circ = \cot 45^\circ $
Now, we will use the value of cot x at $45^\circ $. As, $\cot 45^\circ = 1$
Therefore, $\cot 225^\circ = 1$
So, $\sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
$\cos 75^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
$\tan 105^\circ = - (\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}})$
$\cot 225^\circ = 1$
Note: Whenever we come up with such types of questions, we will use the properties of trigonometry. Such questions can be easily solved when we remember the term Add Coffee To Sugar which represents all, sin, tan and cos. This term shows in which quadrant which function remains positive. For example, in the first quadrant, all functions are positive, in the second quadrant, only sin and cosec are positive and so on. This is used in almost every problem and helps in solving difficult problems easily. Also, we have used the identities of $\sin (A + B)$ and $\cos (A + B)$in this question. These identities are basic identities and all other identities can be derived from them.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

