
Find the values of
i) $\sin 15^\circ $ ii) $\cos 75^\circ $ iii) $\tan 105^\circ $
iv) $\cot 225^\circ $
Answer
588.3k+ views
Hint: To solve this question we will use the identities of $\sin (A + B)$ and $\cos (A + B)$. Also, we will use the value of trigonometric functions at $30^\circ $, $45^\circ $, etc after converting the given angles in the known angles.
Complete step-by-step answer:
Now, we will first find the value of $\sin 15^\circ $. Now, $\sin 15^\circ $ can be written as $\sin 15^\circ = \sin (45^\circ - 30^\circ )$
Now, we will use the identity of $\sin (A + B)$. From trigonometry, we have
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
Similarly, from the above identity, the value of $\sin (A - B)$ can be written as,
$\sin (A - B) = \sin A\cos B - \cos A\sin B$
So, $\sin 15^\circ = \sin (45^\circ - 30^\circ )$ = $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ $
Applying values of trigonometric functions at $30^\circ $ and $45^\circ $, we get
$\sin 15^\circ = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
So, $\sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now, we will use the identity $\cos (A + B) = \cos A\cos B - \sin A\sin B$ to find the value of $\cos 75^\circ $.
Now, $\cos 75^\circ $ = $\cos (45^\circ + 30^\circ )$ = $\cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ $
$\cos 75^\circ = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
Therefore, $\cos 75^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now, $\tan (A + B) = \dfrac{{\sin (A + B)}}{{\cos (A + B)}}$
So, $\tan 105^\circ = \tan (60^\circ + 45^\circ ) = \dfrac{{\sin (60^\circ + 45^\circ )}}{{\cos (60^\circ + 45^\circ )}}$
$\tan 105^\circ = \dfrac{{\dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }}}}$ = $\dfrac{{\sqrt 3 + 1}}{{1 - \sqrt 3 }}$
$\tan 105^\circ = - (\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}})$
Now, $\cot 225^\circ $ can be written as $\cot (180^\circ + 45^\circ )$, so it lies in the third quadrant . So, we get
$\cot 225^\circ = \cot 45^\circ $
Now, we will use the value of cot x at $45^\circ $. As, $\cot 45^\circ = 1$
Therefore, $\cot 225^\circ = 1$
So, $\sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
$\cos 75^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
$\tan 105^\circ = - (\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}})$
$\cot 225^\circ = 1$
Note: Whenever we come up with such types of questions, we will use the properties of trigonometry. Such questions can be easily solved when we remember the term Add Coffee To Sugar which represents all, sin, tan and cos. This term shows in which quadrant which function remains positive. For example, in the first quadrant, all functions are positive, in the second quadrant, only sin and cosec are positive and so on. This is used in almost every problem and helps in solving difficult problems easily. Also, we have used the identities of $\sin (A + B)$ and $\cos (A + B)$in this question. These identities are basic identities and all other identities can be derived from them.
Complete step-by-step answer:
Now, we will first find the value of $\sin 15^\circ $. Now, $\sin 15^\circ $ can be written as $\sin 15^\circ = \sin (45^\circ - 30^\circ )$
Now, we will use the identity of $\sin (A + B)$. From trigonometry, we have
$\sin (A + B) = \sin A\cos B + \cos A\sin B$
Similarly, from the above identity, the value of $\sin (A - B)$ can be written as,
$\sin (A - B) = \sin A\cos B - \cos A\sin B$
So, $\sin 15^\circ = \sin (45^\circ - 30^\circ )$ = $\sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ $
Applying values of trigonometric functions at $30^\circ $ and $45^\circ $, we get
$\sin 15^\circ = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
So, $\sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now, we will use the identity $\cos (A + B) = \cos A\cos B - \sin A\sin B$ to find the value of $\cos 75^\circ $.
Now, $\cos 75^\circ $ = $\cos (45^\circ + 30^\circ )$ = $\cos 45^\circ \cos 30^\circ - \sin 45^\circ \sin 30^\circ $
$\cos 75^\circ = \dfrac{1}{{\sqrt 2 }}.\dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }}.\dfrac{1}{2}$
Therefore, $\cos 75^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Now, $\tan (A + B) = \dfrac{{\sin (A + B)}}{{\cos (A + B)}}$
So, $\tan 105^\circ = \tan (60^\circ + 45^\circ ) = \dfrac{{\sin (60^\circ + 45^\circ )}}{{\cos (60^\circ + 45^\circ )}}$
$\tan 105^\circ = \dfrac{{\dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }} + \dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{2}.\dfrac{1}{{\sqrt 2 }} - \dfrac{{\sqrt 3 }}{2}.\dfrac{1}{{\sqrt 2 }}}}$ = $\dfrac{{\sqrt 3 + 1}}{{1 - \sqrt 3 }}$
$\tan 105^\circ = - (\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}})$
Now, $\cot 225^\circ $ can be written as $\cot (180^\circ + 45^\circ )$, so it lies in the third quadrant . So, we get
$\cot 225^\circ = \cot 45^\circ $
Now, we will use the value of cot x at $45^\circ $. As, $\cot 45^\circ = 1$
Therefore, $\cot 225^\circ = 1$
So, $\sin 15^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
$\cos 75^\circ = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
$\tan 105^\circ = - (\dfrac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}})$
$\cot 225^\circ = 1$
Note: Whenever we come up with such types of questions, we will use the properties of trigonometry. Such questions can be easily solved when we remember the term Add Coffee To Sugar which represents all, sin, tan and cos. This term shows in which quadrant which function remains positive. For example, in the first quadrant, all functions are positive, in the second quadrant, only sin and cosec are positive and so on. This is used in almost every problem and helps in solving difficult problems easily. Also, we have used the identities of $\sin (A + B)$ and $\cos (A + B)$in this question. These identities are basic identities and all other identities can be derived from them.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

