
Find the values of \[\dfrac{{{\left( \sqrt{\sqrt{3}+1}+\sqrt{\sqrt{3}-1} \right)}^{2}}\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
1. \[\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}}\]
2. \[1\]
3. \[\sqrt{3}\]
4. \[\dfrac{1}{\sqrt{3}}\]
Answer
508.2k+ views
Hint: According to the given problem first of all we have to solve the numerator by applying the property of \[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\] and simplifying the brackets in numerator and in denominator we can just simplify and get the answer. So, in this way we can solve the problem.
Complete step by step answer:
Given problem is that we have to find the value of\[\dfrac{{{\left( \sqrt{\sqrt{3}+1}+\sqrt{\sqrt{3}-1} \right)}^{2}}\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}--(1)\]
If you notice this problem we can solve by using the property of\[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\] in numerator.
Here, in this problem we have \[a=\sqrt{\sqrt{3}+1}\,\,\] \[b=\sqrt{\sqrt{3}-1}\]and \[2ab=2\left( \sqrt{\sqrt{3}+1}\, \right)\left( \sqrt{\sqrt{3}-1} \right)\]
Now, we can apply this property in equation\[(1)\]
\[\dfrac{\left[ {{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}+2\left( \sqrt{\sqrt{3}+1} \right)\left( \sqrt{\sqrt{3}-1} \right)+{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}} \right]\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
By modifying the numerator we get:
\[=\dfrac{\left[ \left( \sqrt{3}+1 \right)+2\left( \sqrt{\left( \sqrt{3}-1 \right)\left( \sqrt{3}+1 \right)} \right)+\left( \sqrt{3}-1 \right) \right]\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
By using this property of \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]
Here in this problem\[a=\sqrt{\sqrt{3}+1}\,\,\] \[b=\sqrt{\sqrt{3}-1}\]
\[\left( \sqrt{\sqrt{3}+1} \right)\left( \sqrt{\sqrt{3}-1} \right)=\sqrt{\left( \sqrt{3}-1 \right)\left( \sqrt{3}+1 \right)}=\sqrt{{{\left( \sqrt{3} \right)}^{2}}-{{\left( 1 \right)}^{2}}}--(2)\]
Substitute the equation\[(2)\]in equation\[(1)\]
\[\dfrac{\left[ \left( \sqrt{3}+1 \right)+2\left( \sqrt{{{\left( \sqrt{3} \right)}^{2}}-{{\left( 1 \right)}^{2}}} \right)+\left( \sqrt{3}-1 \right) \right]\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
After simplifying further we get:
\[=\dfrac{\left[ 2\sqrt{3}+2\left( \sqrt{3-1} \right) \right]\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
In the above equation take the 2 common in numerator
\[=\dfrac{2\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
Now, in denominator take the squaring those brackets with roots and \[\sqrt{3}\] gets cancelled out remain 2
\[=\dfrac{2\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)}{\sqrt{3}+1-\sqrt{3}+1}\]
After solving further we will get:
\[=\dfrac{2\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)}{2}\]
Here in the equation 2 get cancelled and we get:
\[=\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)\]
If you kindly see this above equation in the form of \[(a-b)(a+b)\]
So we have to use the property of \[(a-b)(a+b)={{a}^{2}}-{{b}^{2}}\]
\[={{\left( \sqrt{3} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}\]
After solving this squaring brackets
\[=3-2\]
After solving this you get:
\[=1\]
Hence, the value of \[\dfrac{{{\left( \sqrt{\sqrt{3}+1}+\sqrt{\sqrt{3}-1} \right)}^{2}}\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}=1\]
So, the correct answer is “Option 2”.
Note: In this particular problem students may be confused by seeing such complicated problems. But it’s actually easier. It can be advisable for such a problem to solve the brackets first by using the basic property of mathematics. Then the problems become easier to solve. So, in this way we can solve the problems.
Complete step by step answer:
Given problem is that we have to find the value of\[\dfrac{{{\left( \sqrt{\sqrt{3}+1}+\sqrt{\sqrt{3}-1} \right)}^{2}}\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}--(1)\]
If you notice this problem we can solve by using the property of\[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\] in numerator.
Here, in this problem we have \[a=\sqrt{\sqrt{3}+1}\,\,\] \[b=\sqrt{\sqrt{3}-1}\]and \[2ab=2\left( \sqrt{\sqrt{3}+1}\, \right)\left( \sqrt{\sqrt{3}-1} \right)\]
Now, we can apply this property in equation\[(1)\]
\[\dfrac{\left[ {{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}+2\left( \sqrt{\sqrt{3}+1} \right)\left( \sqrt{\sqrt{3}-1} \right)+{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}} \right]\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
By modifying the numerator we get:
\[=\dfrac{\left[ \left( \sqrt{3}+1 \right)+2\left( \sqrt{\left( \sqrt{3}-1 \right)\left( \sqrt{3}+1 \right)} \right)+\left( \sqrt{3}-1 \right) \right]\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
By using this property of \[(a+b)(a-b)={{a}^{2}}-{{b}^{2}}\]
Here in this problem\[a=\sqrt{\sqrt{3}+1}\,\,\] \[b=\sqrt{\sqrt{3}-1}\]
\[\left( \sqrt{\sqrt{3}+1} \right)\left( \sqrt{\sqrt{3}-1} \right)=\sqrt{\left( \sqrt{3}-1 \right)\left( \sqrt{3}+1 \right)}=\sqrt{{{\left( \sqrt{3} \right)}^{2}}-{{\left( 1 \right)}^{2}}}--(2)\]
Substitute the equation\[(2)\]in equation\[(1)\]
\[\dfrac{\left[ \left( \sqrt{3}+1 \right)+2\left( \sqrt{{{\left( \sqrt{3} \right)}^{2}}-{{\left( 1 \right)}^{2}}} \right)+\left( \sqrt{3}-1 \right) \right]\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
After simplifying further we get:
\[=\dfrac{\left[ 2\sqrt{3}+2\left( \sqrt{3-1} \right) \right]\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
In the above equation take the 2 common in numerator
\[=\dfrac{2\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}\]
Now, in denominator take the squaring those brackets with roots and \[\sqrt{3}\] gets cancelled out remain 2
\[=\dfrac{2\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)}{\sqrt{3}+1-\sqrt{3}+1}\]
After solving further we will get:
\[=\dfrac{2\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)}{2}\]
Here in the equation 2 get cancelled and we get:
\[=\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)\]
If you kindly see this above equation in the form of \[(a-b)(a+b)\]
So we have to use the property of \[(a-b)(a+b)={{a}^{2}}-{{b}^{2}}\]
\[={{\left( \sqrt{3} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}\]
After solving this squaring brackets
\[=3-2\]
After solving this you get:
\[=1\]
Hence, the value of \[\dfrac{{{\left( \sqrt{\sqrt{3}+1}+\sqrt{\sqrt{3}-1} \right)}^{2}}\left( \sqrt{3}-\sqrt{2} \right)}{{{\left( \sqrt{\sqrt{3}+1} \right)}^{2}}-{{\left( \sqrt{\sqrt{3}-1} \right)}^{2}}}=1\]
So, the correct answer is “Option 2”.
Note: In this particular problem students may be confused by seeing such complicated problems. But it’s actually easier. It can be advisable for such a problem to solve the brackets first by using the basic property of mathematics. Then the problems become easier to solve. So, in this way we can solve the problems.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

What is the full form of pH?


