
Find the values of \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\].
Answer
538.2k+ views
Hint: To solve the question given above, we will first out the values of \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)\] and \[2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\]. The value of \[2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] will be calculated with the help of the formula given below:
\[2{{\sin }^{-1}}\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]. After calculating the respective values of \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)\] and \[2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\], we will add both their values to get the final answer.
Complete step-by-step solution -
To start with, we will first find out the value of \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)\]. Now, we know that the value of \[\cos {{60}^{\circ }}=\dfrac{1}{2}\]. Thus, we have:
\[\Rightarrow \cos {{60}^{\circ }}=\dfrac{1}{2}\]
Now, we will convert \[{{60}^{\circ }}\] to radian form. The conversion from degree to radian is achieved by the following formula:
\[{{x}^{\circ }}=\dfrac{\pi }{180}\times x\] radian
Thus the value of \[{{60}^{\circ }}\] = \[\dfrac{\pi }{180}\times {{60}^{\circ }}=\dfrac{\pi }{3}\]. Thus, we will get:
\[\Rightarrow \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\]
Now, we will take \[{{\cos }^{-1}}\] on both sides, thus we will get the following:
\[\Rightarrow {{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\]
Now, we will use the identity shown below:
\[\Rightarrow {{\cos }^{-1}}\left( \cos x \right)=x\] (if \[-1\le x\le 1\])
Thus, we will get:
\[\Rightarrow \dfrac{\pi }{3}={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\]
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}\] ----- (1)
Now, we will find the value of \[2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\]. The value of \[2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] is calculated by the formula given below:
\[2{{\sin }^{-1}}x={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]
In our case the value of x is \[\dfrac{1}{2}\]. So, we will get:
\[\begin{align}
& 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left[ 2\left( \dfrac{1}{2} \right)\sqrt{1-{{\left( \dfrac{1}{2} \right)}^{2}}} \right] \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left[ 1\times \sqrt{1-\dfrac{1}{4}} \right] \\
\end{align}\]
\[\Rightarrow 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left[ \dfrac{\sqrt{3}}{2} \right]\] ------ (2)
Now, we know that the value of \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\]. Thus, we have:
\[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\]
\[\begin{align}
& \sin \left( 60\times \dfrac{\pi }{180}radian \right)=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2} \\
\end{align}\]
Now, we will take \[{{\sin }^{-1}}\] on both sides. After doing this, we will get the following equation:
\[\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{3} \right) \right)={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\]
Now, we will use an inverse trigonometric identity shown below:
\[{{\sin }^{-1}}\left( \sin x \right)=x\] (if \[-1\le x\le 1\])
Thus, we will get following equation:
\[\dfrac{\pi }{3}={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\]
Now, we will put this value of \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] from above equation to (ii). Thus, we will get eh following equation:
\[{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}\] ------- (3)
Now, we will add equations (1) and (3). After doing this, we will get:
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}+\dfrac{\pi }{3} \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{2\pi }{3} \\
\end{align}\].
Note: The above question can also be solve by the method shown below:
We can also write \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] as shown below:
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\cos }^{-1}}\left( \dfrac{1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\left[ {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right]+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \\
\end{align}\]
Now, we will use the identity: \[{{\cos }^{-1}}x+{{\sin }^{-1}}x=\dfrac{\pi }{2}\]. Thus, we will get,
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\left[ \dfrac{\pi }{2} \right]+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}+\dfrac{\pi }{6} \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{2\pi }{3} \\
\end{align}\].
\[2{{\sin }^{-1}}\left( x \right)={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]. After calculating the respective values of \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)\] and \[2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\], we will add both their values to get the final answer.
Complete step-by-step solution -
To start with, we will first find out the value of \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)\]. Now, we know that the value of \[\cos {{60}^{\circ }}=\dfrac{1}{2}\]. Thus, we have:
\[\Rightarrow \cos {{60}^{\circ }}=\dfrac{1}{2}\]
Now, we will convert \[{{60}^{\circ }}\] to radian form. The conversion from degree to radian is achieved by the following formula:
\[{{x}^{\circ }}=\dfrac{\pi }{180}\times x\] radian
Thus the value of \[{{60}^{\circ }}\] = \[\dfrac{\pi }{180}\times {{60}^{\circ }}=\dfrac{\pi }{3}\]. Thus, we will get:
\[\Rightarrow \cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\]
Now, we will take \[{{\cos }^{-1}}\] on both sides, thus we will get the following:
\[\Rightarrow {{\cos }^{-1}}\left( \cos \left( \dfrac{\pi }{3} \right) \right)={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\]
Now, we will use the identity shown below:
\[\Rightarrow {{\cos }^{-1}}\left( \cos x \right)=x\] (if \[-1\le x\le 1\])
Thus, we will get:
\[\Rightarrow \dfrac{\pi }{3}={{\cos }^{-1}}\left( \dfrac{1}{2} \right)\]
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}\] ----- (1)
Now, we will find the value of \[2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\]. The value of \[2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] is calculated by the formula given below:
\[2{{\sin }^{-1}}x={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]
In our case the value of x is \[\dfrac{1}{2}\]. So, we will get:
\[\begin{align}
& 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left[ 2\left( \dfrac{1}{2} \right)\sqrt{1-{{\left( \dfrac{1}{2} \right)}^{2}}} \right] \\
& \Rightarrow 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left[ 1\times \sqrt{1-\dfrac{1}{4}} \right] \\
\end{align}\]
\[\Rightarrow 2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\sin }^{-1}}\left[ \dfrac{\sqrt{3}}{2} \right]\] ------ (2)
Now, we know that the value of \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\]. Thus, we have:
\[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\]
\[\begin{align}
& \sin \left( 60\times \dfrac{\pi }{180}radian \right)=\dfrac{\sqrt{3}}{2} \\
& \Rightarrow \sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2} \\
\end{align}\]
Now, we will take \[{{\sin }^{-1}}\] on both sides. After doing this, we will get the following equation:
\[\Rightarrow {{\sin }^{-1}}\left( \sin \left( \dfrac{\pi }{3} \right) \right)={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\]
Now, we will use an inverse trigonometric identity shown below:
\[{{\sin }^{-1}}\left( \sin x \right)=x\] (if \[-1\le x\le 1\])
Thus, we will get following equation:
\[\dfrac{\pi }{3}={{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\]
Now, we will put this value of \[{{\sin }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)\] from above equation to (ii). Thus, we will get eh following equation:
\[{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}\] ------- (3)
Now, we will add equations (1) and (3). After doing this, we will get:
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{3}+\dfrac{\pi }{3} \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{2\pi }{3} \\
\end{align}\].
Note: The above question can also be solve by the method shown below:
We can also write \[{{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)\] as shown below:
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)={{\cos }^{-1}}\left( \dfrac{1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\left[ {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \right]+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \\
\end{align}\]
Now, we will use the identity: \[{{\cos }^{-1}}x+{{\sin }^{-1}}x=\dfrac{\pi }{2}\]. Thus, we will get,
\[\begin{align}
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\left[ \dfrac{\pi }{2} \right]+{{\sin }^{-1}}\left( \dfrac{1}{2} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{\pi }{2}+\dfrac{\pi }{6} \\
& \Rightarrow {{\cos }^{-1}}\left( \dfrac{1}{2} \right)+2{{\sin }^{-1}}\left( \dfrac{1}{2} \right)=\dfrac{2\pi }{3} \\
\end{align}\].
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
