
Find the value x:
${{\sin }^{-1}}x+{{\sin }^{-1}}\left( 1-x \right)={{\cos }^{-1}}x$.
Answer
609k+ views
Hint: First of all take cos on both the sides of the given equation then in the left hand side of the equation, use the formula cos (A + B) =cos A cos B – sin A sin B. After that we will find the equation is in variable x then solve for x.
Complete step-by-step answer:
We are taking cos on both the sides in the expression given in the question as follows:
${{\sin }^{-1}}x+{{\sin }^{-1}}\left( 1-x \right)={{\cos }^{-1}}x$
$\cos \left( {{\sin }^{-1}}x+{{\sin }^{-1}}\left( 1-x \right) \right)=\cos \left( {{\cos }^{-1}}x \right)$
In the above expression, consider ${{\sin }^{-1}}x$ as A and ${{\sin }^{-1}}\left( 1-x \right)$ as B then the left hand side of the expression looks like cos (A+ B) which is equal to cos A cos B – sin A sin B and $\cos \left( {{\cos }^{-1}}x \right)$ is reduced to x. Now, substituting these conditions in the above expression we get,
$\cos ({{\sin }^{-1}}x)\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)-\sin \left( {{\sin }^{-1}}x \right)\sin \left( {{\sin }^{-1}}\left( 1-x \right) \right)=x$…………….Eq. (1)
Now, let us assume ${{\sin }^{-1}}x=\theta $. This ${{\sin }^{-1}}x$ is the one which is the angle of $\cos \left( {{\sin }^{-1}}x \right)$ in the above expression.
Solving the value of $\sin \left( {{\sin }^{-1}}x \right)$ as follows:
We have assumed that:
${{\sin }^{-1}}x=\theta $.
Now taking sin on both the sides we get,
$\begin{align}
& \sin \left( {{\sin }^{-1}}x \right)=\sin \theta \\
& \Rightarrow x=\sin \theta \\
\end{align}$
In the above steps, we have shown that $\sin \left( {{\sin }^{-1}}x \right)$ equals x. This is due to the fact that when we write any number, polynomial or any expression with its inverse then it reduces to 1 or identity. Also, we have shown that sin θ = x so $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$ and cos θ in terms of x will be $\sqrt{1-{{x}^{2}}}$.
So, we can write $\cos \left( {{\sin }^{-1}}x \right)=\sqrt{1-{{x}^{2}}}$. Similarly, we can find the value of -$\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)\text{, }\sin \left( {{\sin }^{-1}}\left( 1-x \right) \right)$.
In $\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)$, let us assume that ${{\sin }^{-1}}\left( 1-x \right)=\alpha $. Now, taking sin on both the sides we get,
$1-x=\sin \alpha $
We can write $\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)$ as cos α so the value of cos α in terms of x is \[\sqrt{1-\left( 1-{{x}^{2}} \right)}\].
Hence, $\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)=\sqrt{1-{{\left( 1-x \right)}^{2}}}$
Now, $\sin \left( {{\sin }^{-1}}\left( 1-x \right) \right)$is equal to 1 – x. Similarly, we can also say that $\sin \left( {{\sin }^{-1}}x \right)=x$.
Substituting $\cos \left( {{\sin }^{-1}}x \right),\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)\text{,sin}\left( {{\sin }^{-1}}x \right),\sin \left( {{\sin }^{-1}}\left( 1-x \right) \right)$in Eq. (1) we get,
$\begin{align}
& \sqrt{1-{{x}^{2}}}\sqrt{1-{{\left( 1-x \right)}^{2}}}-x\left( 1-x \right)=x \\
& \Rightarrow \sqrt{1-{{x}^{2}}}\sqrt{1-{{\left( 1-x \right)}^{2}}}-x+{{x}^{2}}=x \\
& \Rightarrow \sqrt{1-{{x}^{2}}}\sqrt{1-{{\left( 1-x \right)}^{2}}}=2x-{{x}^{2}} \\
& \\
\end{align}$
On squaring both the sides we get,
$\begin{align}
& \left( 1-{{x}^{2}} \right)\left( 1-{{\left( 1-x \right)}^{2}} \right)={{\left( 2x-{{x}^{2}} \right)}^{2}} \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\left( 1-\left( 1+{{x}^{2}}-2x \right) \right)=4{{x}^{2}}+{{x}^{4}}-4{{x}^{3}} \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\left( 1-1-{{x}^{2}}+2x \right)=4{{x}^{2}}+{{x}^{4}}-4{{x}^{3}} \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\left( -{{x}^{2}}+2x \right)=4{{x}^{2}}+{{x}^{4}}-4{{x}^{3}} \\
& \Rightarrow -{{x}^{2}}+2x+{{x}^{4}}-2{{x}^{3}}=4{{x}^{2}}+{{x}^{4}}-4{{x}^{3}} \\
\end{align}$
In the above step ${x}^{4}$ will be cancelled out from both the sides and then the above expression will look like:
$\begin{align}
& 4{{x}^{3}}-2{{x}^{3}}+2x-5{{x}^{2}}=0 \\
& \Rightarrow 2{{x}^{3}}-5{{x}^{2}}+2x=0 \\
& \Rightarrow x\left( 2{{x}^{2}}-5x+2 \right)=0 \\
& \\
\end{align}$
The solutions of the above equation are as follows:
$x=0\text{, 2}{{x}^{2}}-5x+2=0$
Solving the quadratic equation we get,
$\begin{align}
& 2{{x}^{2}}-5x+2=0 \\
& \Rightarrow 2{{x}^{2}}-4x-x+2=0 \\
& \Rightarrow 2x\left( x-2 \right)-1\left( x-2 \right)=0 \\
& \Rightarrow \left( 2x-1 \right)\left( x-2 \right)=0 \\
& x=\dfrac{1}{2},x=2 \\
\end{align}$
Here, we have got 3 solutions $x=0,\dfrac{1}{2},2$.
Now, 2 cannot be a solution because ${{\sin }^{-1}}\left( 2 \right)\And {{\cos }^{-1}}\left( 2 \right)$ are not defined.
Hence, the solutions are $x=0,\dfrac{1}{2}$.
Note: Always check the solutions that you got from solving the equation by putting the solutions one by one in the mother equation. Like in the above question, we are getting 3 solutions, 1 is rejected because ${{\sin }^{-1}}\left( 2 \right)\And {{\cos }^{-1}}\left( 2 \right)$ are not defined. Now, we are going to check the other solutions by putting these solutions in ${{\sin }^{-1}}x+{{\sin }^{-1}}\left( 1-x \right)={{\cos }^{-1}}x$.
Putting x = 0 in the above equation we get,
$\begin{align}
& {{\sin }^{-1}}0+{{\sin }^{-1}}\left( 1-0 \right)={{\cos }^{-1}}0 \\
& 0+\dfrac{\pi }{2}=\dfrac{\pi }{2} \\
\end{align}$
Hence, x = 0 is satisfying the given equation. Now, putting $x=\dfrac{1}{2}$ in the given equation, we get: $\begin{align}
& {{\sin }^{-1}}\dfrac{1}{2}+{{\sin }^{-1}}\left( 1-\dfrac{1}{2} \right)={{\cos }^{-1}}\dfrac{1}{2} \\
& \Rightarrow {{\sin }^{-1}}\dfrac{1}{2}+{{\sin }^{-1}}\dfrac{1}{2}={{\cos }^{-1}}\dfrac{1}{2} \\
& \Rightarrow 2{{\sin }^{-1}}\dfrac{1}{2}={{\cos }^{-1}}\dfrac{1}{2} \\
& \Rightarrow 2\dfrac{\pi }{6}=\dfrac{\pi }{3} \\
& \Rightarrow \dfrac{\pi }{3}=\dfrac{\pi }{3} \\
\end{align}$
Hence, $x=\dfrac{1}{2}$ is satisfying the given equation.
Complete step-by-step answer:
We are taking cos on both the sides in the expression given in the question as follows:
${{\sin }^{-1}}x+{{\sin }^{-1}}\left( 1-x \right)={{\cos }^{-1}}x$
$\cos \left( {{\sin }^{-1}}x+{{\sin }^{-1}}\left( 1-x \right) \right)=\cos \left( {{\cos }^{-1}}x \right)$
In the above expression, consider ${{\sin }^{-1}}x$ as A and ${{\sin }^{-1}}\left( 1-x \right)$ as B then the left hand side of the expression looks like cos (A+ B) which is equal to cos A cos B – sin A sin B and $\cos \left( {{\cos }^{-1}}x \right)$ is reduced to x. Now, substituting these conditions in the above expression we get,
$\cos ({{\sin }^{-1}}x)\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)-\sin \left( {{\sin }^{-1}}x \right)\sin \left( {{\sin }^{-1}}\left( 1-x \right) \right)=x$…………….Eq. (1)
Now, let us assume ${{\sin }^{-1}}x=\theta $. This ${{\sin }^{-1}}x$ is the one which is the angle of $\cos \left( {{\sin }^{-1}}x \right)$ in the above expression.
Solving the value of $\sin \left( {{\sin }^{-1}}x \right)$ as follows:
We have assumed that:
${{\sin }^{-1}}x=\theta $.
Now taking sin on both the sides we get,
$\begin{align}
& \sin \left( {{\sin }^{-1}}x \right)=\sin \theta \\
& \Rightarrow x=\sin \theta \\
\end{align}$
In the above steps, we have shown that $\sin \left( {{\sin }^{-1}}x \right)$ equals x. This is due to the fact that when we write any number, polynomial or any expression with its inverse then it reduces to 1 or identity. Also, we have shown that sin θ = x so $\cos \theta =\sqrt{1-{{\sin }^{2}}\theta }$ and cos θ in terms of x will be $\sqrt{1-{{x}^{2}}}$.
So, we can write $\cos \left( {{\sin }^{-1}}x \right)=\sqrt{1-{{x}^{2}}}$. Similarly, we can find the value of -$\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)\text{, }\sin \left( {{\sin }^{-1}}\left( 1-x \right) \right)$.
In $\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)$, let us assume that ${{\sin }^{-1}}\left( 1-x \right)=\alpha $. Now, taking sin on both the sides we get,
$1-x=\sin \alpha $
We can write $\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)$ as cos α so the value of cos α in terms of x is \[\sqrt{1-\left( 1-{{x}^{2}} \right)}\].
Hence, $\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)=\sqrt{1-{{\left( 1-x \right)}^{2}}}$
Now, $\sin \left( {{\sin }^{-1}}\left( 1-x \right) \right)$is equal to 1 – x. Similarly, we can also say that $\sin \left( {{\sin }^{-1}}x \right)=x$.
Substituting $\cos \left( {{\sin }^{-1}}x \right),\cos \left( {{\sin }^{-1}}\left( 1-x \right) \right)\text{,sin}\left( {{\sin }^{-1}}x \right),\sin \left( {{\sin }^{-1}}\left( 1-x \right) \right)$in Eq. (1) we get,
$\begin{align}
& \sqrt{1-{{x}^{2}}}\sqrt{1-{{\left( 1-x \right)}^{2}}}-x\left( 1-x \right)=x \\
& \Rightarrow \sqrt{1-{{x}^{2}}}\sqrt{1-{{\left( 1-x \right)}^{2}}}-x+{{x}^{2}}=x \\
& \Rightarrow \sqrt{1-{{x}^{2}}}\sqrt{1-{{\left( 1-x \right)}^{2}}}=2x-{{x}^{2}} \\
& \\
\end{align}$
On squaring both the sides we get,
$\begin{align}
& \left( 1-{{x}^{2}} \right)\left( 1-{{\left( 1-x \right)}^{2}} \right)={{\left( 2x-{{x}^{2}} \right)}^{2}} \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\left( 1-\left( 1+{{x}^{2}}-2x \right) \right)=4{{x}^{2}}+{{x}^{4}}-4{{x}^{3}} \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\left( 1-1-{{x}^{2}}+2x \right)=4{{x}^{2}}+{{x}^{4}}-4{{x}^{3}} \\
& \Rightarrow \left( 1-{{x}^{2}} \right)\left( -{{x}^{2}}+2x \right)=4{{x}^{2}}+{{x}^{4}}-4{{x}^{3}} \\
& \Rightarrow -{{x}^{2}}+2x+{{x}^{4}}-2{{x}^{3}}=4{{x}^{2}}+{{x}^{4}}-4{{x}^{3}} \\
\end{align}$
In the above step ${x}^{4}$ will be cancelled out from both the sides and then the above expression will look like:
$\begin{align}
& 4{{x}^{3}}-2{{x}^{3}}+2x-5{{x}^{2}}=0 \\
& \Rightarrow 2{{x}^{3}}-5{{x}^{2}}+2x=0 \\
& \Rightarrow x\left( 2{{x}^{2}}-5x+2 \right)=0 \\
& \\
\end{align}$
The solutions of the above equation are as follows:
$x=0\text{, 2}{{x}^{2}}-5x+2=0$
Solving the quadratic equation we get,
$\begin{align}
& 2{{x}^{2}}-5x+2=0 \\
& \Rightarrow 2{{x}^{2}}-4x-x+2=0 \\
& \Rightarrow 2x\left( x-2 \right)-1\left( x-2 \right)=0 \\
& \Rightarrow \left( 2x-1 \right)\left( x-2 \right)=0 \\
& x=\dfrac{1}{2},x=2 \\
\end{align}$
Here, we have got 3 solutions $x=0,\dfrac{1}{2},2$.
Now, 2 cannot be a solution because ${{\sin }^{-1}}\left( 2 \right)\And {{\cos }^{-1}}\left( 2 \right)$ are not defined.
Hence, the solutions are $x=0,\dfrac{1}{2}$.
Note: Always check the solutions that you got from solving the equation by putting the solutions one by one in the mother equation. Like in the above question, we are getting 3 solutions, 1 is rejected because ${{\sin }^{-1}}\left( 2 \right)\And {{\cos }^{-1}}\left( 2 \right)$ are not defined. Now, we are going to check the other solutions by putting these solutions in ${{\sin }^{-1}}x+{{\sin }^{-1}}\left( 1-x \right)={{\cos }^{-1}}x$.
Putting x = 0 in the above equation we get,
$\begin{align}
& {{\sin }^{-1}}0+{{\sin }^{-1}}\left( 1-0 \right)={{\cos }^{-1}}0 \\
& 0+\dfrac{\pi }{2}=\dfrac{\pi }{2} \\
\end{align}$
Hence, x = 0 is satisfying the given equation. Now, putting $x=\dfrac{1}{2}$ in the given equation, we get: $\begin{align}
& {{\sin }^{-1}}\dfrac{1}{2}+{{\sin }^{-1}}\left( 1-\dfrac{1}{2} \right)={{\cos }^{-1}}\dfrac{1}{2} \\
& \Rightarrow {{\sin }^{-1}}\dfrac{1}{2}+{{\sin }^{-1}}\dfrac{1}{2}={{\cos }^{-1}}\dfrac{1}{2} \\
& \Rightarrow 2{{\sin }^{-1}}\dfrac{1}{2}={{\cos }^{-1}}\dfrac{1}{2} \\
& \Rightarrow 2\dfrac{\pi }{6}=\dfrac{\pi }{3} \\
& \Rightarrow \dfrac{\pi }{3}=\dfrac{\pi }{3} \\
\end{align}$
Hence, $x=\dfrac{1}{2}$ is satisfying the given equation.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

