
Find the value the trigonometric terms: \[\tan 67{\dfrac{1}{2}^ \circ } + \cot 67{\dfrac{1}{2}^ \circ }\] respectively.
A. \[2\sqrt 2 \]
B. \[2\]
C. \[\sqrt 2 \]
D. \[1\]
Answer
478.5k+ views
Hint: The given problem revolves around the concepts of trigonometric equations. So, we will use the definition of trigonometric equations and its identities. Here, we are going to extract the in bracket term i.e. angle then by considering the formula for trigonometric ratio for double angles say, $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$ to find the given terms in an expression and then substituting the values the desired solution can be obtained.
Complete step by step answer:
Since, we have given the expression as,
\[\tan 67{\dfrac{1}{2}^ \circ } + \cot 67{\dfrac{1}{2}^ \circ }\]
As a result, the given expression can also be written as,
\[\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } + \cot {\left( {\dfrac{{135}}{2}} \right)^ \circ }\]
Where, $\dfrac{{135}}{2} = 67$
Now, let us assume that \[\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } = \tan \theta \] for efficiency of the solution, we get
\[\tan \theta + \cot \theta \]
Since, we know that $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
Hence,
$\tan 2\theta = \tan {135^ \circ } \\
\Rightarrow \tan 2\theta = \tan ({90^ \circ } + {45^ \circ }) \\ $
According to the trigonometric conditions of change in four different quadrants (the above terminology exists in second quadrant), we get
$\tan 2\theta = - \cot {45^ \circ } \\
\Rightarrow \tan 2\theta = - 1 \\ $
Where, $\cot {45^ \circ } = 1$
Now, hence considering the equation$\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$,
$\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} = {\text{ }} - 1$
Solving the equation predominantly, we get
\[2\tan \theta = - 1(1 - {\tan ^2}\theta ) \\
\Rightarrow 2\tan \theta = {\tan ^2}\theta - 1 \\
\Rightarrow {\tan ^2}\theta - 2\tan \theta - 1 = 0 \\ \]
As a result, the above equation seems to be quadratic in terms of $\tan \theta $. Let, $\tan \theta = x$. The equation becomes,
\[{x^2} - 2x - 1 = 0\]
The equation does not exists real factors, hence solving it by factorisation formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Substituting the values in this equation, we get,
$\Rightarrow x = \dfrac{{ - ( - 2) \pm \sqrt {{{( - 2)}^2} - 4(1)( - 1)} }}{{2(1)}} \\
\Rightarrow x = \dfrac{{2 \pm \sqrt {4 + 4} }}{2} = \dfrac{{2 \pm \sqrt 8 }}{2} \\
\Rightarrow x = \dfrac{{2 \pm \sqrt {4 \times 2} }}{2} = \dfrac{{2 \pm 2\sqrt 2 }}{2} \\
\Rightarrow x = \dfrac{{2(1 \pm \sqrt 2 )}}{2} \\
\Rightarrow x = 1 \pm \sqrt 2 \\ $
Re-substituting the value of$x = \tan \theta $, we get
\[ \Rightarrow \tan \theta = 1 \pm \sqrt 2 \]
Considering the positive value of the equation (the angle never exists in negative standard), we get \[ \tan \theta = 1 + \sqrt 2 \].
Similarly, \[ \cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{{1 + \sqrt 2 }}\]
Multiplying and dividing $1 - \sqrt 2 $ the above equation, we get
\[\Rightarrow \cot \theta = \dfrac{1}{{1 + \sqrt 2 }} \times \dfrac{{1 - \sqrt 2 }}{{1 - \sqrt 2 }} \\
\Rightarrow \cot \theta = \dfrac{{1 - \sqrt 2 }}{{{1^2} - {{\left( {\sqrt 2 } \right)}^2}}} \\
\Rightarrow \cot \theta = \dfrac{{1 - \sqrt 2 }}{{1 - 2}} \\ \]
Where, the algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$ is been used,
\[\Rightarrow \cot \theta = - (1 - \sqrt 2 ) \\
\Rightarrow \cot \theta = \sqrt 2 - 1 \\ \]
Now, hence the given equation becomes,
i.e. \[\tan \theta + \cot \theta \]
Substituting the values that we have found in the above solution, we get
\[\tan \theta + \cot \theta = 1 + \sqrt 2 + \sqrt 2 - 1 \\
\Rightarrow \tan \theta + \cot \theta = 1 + \sqrt 2 + \sqrt 2 - 1 \\
\Rightarrow \tan \theta + \cot \theta = 2\sqrt 2 \\ \]
Re-Substitute the value of $\theta $assume earlier i.e. $\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } = \theta $, we get the required solution
$ \therefore \tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } + \cot {\left( {\dfrac{{135}}{2}} \right)^ \circ } = 2\sqrt 2 $
Hence, option A is correct.
Note: One must know how to convert the ‘tan’, ‘cot’, ‘sec’ and ‘cosec’ terms in trigonometric formulae for all the terms especially trigonometric ratios for double angle, triple angles, half angles, compound angles, etc. say, $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$ so as to distinguish the solution accurately. Also, we should know all the required values of standard angles say, \[{0^o},{30^o},{45^o},{60^o},{90^o},{180^o},{270^o},{360^o}\] respectively for each trigonometric term such as $\sin ,\cos ,\tan ,\cot ,\sec ,\cos ec$, etc. We should take care of the calculations so as to be sure of our final answer.
Complete step by step answer:
Since, we have given the expression as,
\[\tan 67{\dfrac{1}{2}^ \circ } + \cot 67{\dfrac{1}{2}^ \circ }\]
As a result, the given expression can also be written as,
\[\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } + \cot {\left( {\dfrac{{135}}{2}} \right)^ \circ }\]
Where, $\dfrac{{135}}{2} = 67$
Now, let us assume that \[\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } = \tan \theta \] for efficiency of the solution, we get
\[\tan \theta + \cot \theta \]
Since, we know that $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
Hence,
$\tan 2\theta = \tan {135^ \circ } \\
\Rightarrow \tan 2\theta = \tan ({90^ \circ } + {45^ \circ }) \\ $
According to the trigonometric conditions of change in four different quadrants (the above terminology exists in second quadrant), we get
$\tan 2\theta = - \cot {45^ \circ } \\
\Rightarrow \tan 2\theta = - 1 \\ $
Where, $\cot {45^ \circ } = 1$
Now, hence considering the equation$\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$,
$\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} = {\text{ }} - 1$
Solving the equation predominantly, we get
\[2\tan \theta = - 1(1 - {\tan ^2}\theta ) \\
\Rightarrow 2\tan \theta = {\tan ^2}\theta - 1 \\
\Rightarrow {\tan ^2}\theta - 2\tan \theta - 1 = 0 \\ \]
As a result, the above equation seems to be quadratic in terms of $\tan \theta $. Let, $\tan \theta = x$. The equation becomes,
\[{x^2} - 2x - 1 = 0\]
The equation does not exists real factors, hence solving it by factorisation formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Substituting the values in this equation, we get,
$\Rightarrow x = \dfrac{{ - ( - 2) \pm \sqrt {{{( - 2)}^2} - 4(1)( - 1)} }}{{2(1)}} \\
\Rightarrow x = \dfrac{{2 \pm \sqrt {4 + 4} }}{2} = \dfrac{{2 \pm \sqrt 8 }}{2} \\
\Rightarrow x = \dfrac{{2 \pm \sqrt {4 \times 2} }}{2} = \dfrac{{2 \pm 2\sqrt 2 }}{2} \\
\Rightarrow x = \dfrac{{2(1 \pm \sqrt 2 )}}{2} \\
\Rightarrow x = 1 \pm \sqrt 2 \\ $
Re-substituting the value of$x = \tan \theta $, we get
\[ \Rightarrow \tan \theta = 1 \pm \sqrt 2 \]
Considering the positive value of the equation (the angle never exists in negative standard), we get \[ \tan \theta = 1 + \sqrt 2 \].
Similarly, \[ \cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{{1 + \sqrt 2 }}\]
Multiplying and dividing $1 - \sqrt 2 $ the above equation, we get
\[\Rightarrow \cot \theta = \dfrac{1}{{1 + \sqrt 2 }} \times \dfrac{{1 - \sqrt 2 }}{{1 - \sqrt 2 }} \\
\Rightarrow \cot \theta = \dfrac{{1 - \sqrt 2 }}{{{1^2} - {{\left( {\sqrt 2 } \right)}^2}}} \\
\Rightarrow \cot \theta = \dfrac{{1 - \sqrt 2 }}{{1 - 2}} \\ \]
Where, the algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$ is been used,
\[\Rightarrow \cot \theta = - (1 - \sqrt 2 ) \\
\Rightarrow \cot \theta = \sqrt 2 - 1 \\ \]
Now, hence the given equation becomes,
i.e. \[\tan \theta + \cot \theta \]
Substituting the values that we have found in the above solution, we get
\[\tan \theta + \cot \theta = 1 + \sqrt 2 + \sqrt 2 - 1 \\
\Rightarrow \tan \theta + \cot \theta = 1 + \sqrt 2 + \sqrt 2 - 1 \\
\Rightarrow \tan \theta + \cot \theta = 2\sqrt 2 \\ \]
Re-Substitute the value of $\theta $assume earlier i.e. $\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } = \theta $, we get the required solution
$ \therefore \tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } + \cot {\left( {\dfrac{{135}}{2}} \right)^ \circ } = 2\sqrt 2 $
Hence, option A is correct.
Note: One must know how to convert the ‘tan’, ‘cot’, ‘sec’ and ‘cosec’ terms in trigonometric formulae for all the terms especially trigonometric ratios for double angle, triple angles, half angles, compound angles, etc. say, $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$ so as to distinguish the solution accurately. Also, we should know all the required values of standard angles say, \[{0^o},{30^o},{45^o},{60^o},{90^o},{180^o},{270^o},{360^o}\] respectively for each trigonometric term such as $\sin ,\cos ,\tan ,\cot ,\sec ,\cos ec$, etc. We should take care of the calculations so as to be sure of our final answer.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Draw a diagram showing the external features of fish class 11 biology CBSE

Correct the following 1m1000cm class 11 physics CBSE

Which river is known as Ganga of the south A Krishna class 11 social science CBSE

