
Find the value the trigonometric terms: \[\tan 67{\dfrac{1}{2}^ \circ } + \cot 67{\dfrac{1}{2}^ \circ }\] respectively.
A. \[2\sqrt 2 \]
B. \[2\]
C. \[\sqrt 2 \]
D. \[1\]
Answer
506.1k+ views
Hint: The given problem revolves around the concepts of trigonometric equations. So, we will use the definition of trigonometric equations and its identities. Here, we are going to extract the in bracket term i.e. angle then by considering the formula for trigonometric ratio for double angles say, $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$ to find the given terms in an expression and then substituting the values the desired solution can be obtained.
Complete step by step answer:
Since, we have given the expression as,
\[\tan 67{\dfrac{1}{2}^ \circ } + \cot 67{\dfrac{1}{2}^ \circ }\]
As a result, the given expression can also be written as,
\[\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } + \cot {\left( {\dfrac{{135}}{2}} \right)^ \circ }\]
Where, $\dfrac{{135}}{2} = 67$
Now, let us assume that \[\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } = \tan \theta \] for efficiency of the solution, we get
\[\tan \theta + \cot \theta \]
Since, we know that $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
Hence,
$\tan 2\theta = \tan {135^ \circ } \\
\Rightarrow \tan 2\theta = \tan ({90^ \circ } + {45^ \circ }) \\ $
According to the trigonometric conditions of change in four different quadrants (the above terminology exists in second quadrant), we get
$\tan 2\theta = - \cot {45^ \circ } \\
\Rightarrow \tan 2\theta = - 1 \\ $
Where, $\cot {45^ \circ } = 1$
Now, hence considering the equation$\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$,
$\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} = {\text{ }} - 1$
Solving the equation predominantly, we get
\[2\tan \theta = - 1(1 - {\tan ^2}\theta ) \\
\Rightarrow 2\tan \theta = {\tan ^2}\theta - 1 \\
\Rightarrow {\tan ^2}\theta - 2\tan \theta - 1 = 0 \\ \]
As a result, the above equation seems to be quadratic in terms of $\tan \theta $. Let, $\tan \theta = x$. The equation becomes,
\[{x^2} - 2x - 1 = 0\]
The equation does not exists real factors, hence solving it by factorisation formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Substituting the values in this equation, we get,
$\Rightarrow x = \dfrac{{ - ( - 2) \pm \sqrt {{{( - 2)}^2} - 4(1)( - 1)} }}{{2(1)}} \\
\Rightarrow x = \dfrac{{2 \pm \sqrt {4 + 4} }}{2} = \dfrac{{2 \pm \sqrt 8 }}{2} \\
\Rightarrow x = \dfrac{{2 \pm \sqrt {4 \times 2} }}{2} = \dfrac{{2 \pm 2\sqrt 2 }}{2} \\
\Rightarrow x = \dfrac{{2(1 \pm \sqrt 2 )}}{2} \\
\Rightarrow x = 1 \pm \sqrt 2 \\ $
Re-substituting the value of$x = \tan \theta $, we get
\[ \Rightarrow \tan \theta = 1 \pm \sqrt 2 \]
Considering the positive value of the equation (the angle never exists in negative standard), we get \[ \tan \theta = 1 + \sqrt 2 \].
Similarly, \[ \cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{{1 + \sqrt 2 }}\]
Multiplying and dividing $1 - \sqrt 2 $ the above equation, we get
\[\Rightarrow \cot \theta = \dfrac{1}{{1 + \sqrt 2 }} \times \dfrac{{1 - \sqrt 2 }}{{1 - \sqrt 2 }} \\
\Rightarrow \cot \theta = \dfrac{{1 - \sqrt 2 }}{{{1^2} - {{\left( {\sqrt 2 } \right)}^2}}} \\
\Rightarrow \cot \theta = \dfrac{{1 - \sqrt 2 }}{{1 - 2}} \\ \]
Where, the algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$ is been used,
\[\Rightarrow \cot \theta = - (1 - \sqrt 2 ) \\
\Rightarrow \cot \theta = \sqrt 2 - 1 \\ \]
Now, hence the given equation becomes,
i.e. \[\tan \theta + \cot \theta \]
Substituting the values that we have found in the above solution, we get
\[\tan \theta + \cot \theta = 1 + \sqrt 2 + \sqrt 2 - 1 \\
\Rightarrow \tan \theta + \cot \theta = 1 + \sqrt 2 + \sqrt 2 - 1 \\
\Rightarrow \tan \theta + \cot \theta = 2\sqrt 2 \\ \]
Re-Substitute the value of $\theta $assume earlier i.e. $\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } = \theta $, we get the required solution
$ \therefore \tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } + \cot {\left( {\dfrac{{135}}{2}} \right)^ \circ } = 2\sqrt 2 $
Hence, option A is correct.
Note: One must know how to convert the ‘tan’, ‘cot’, ‘sec’ and ‘cosec’ terms in trigonometric formulae for all the terms especially trigonometric ratios for double angle, triple angles, half angles, compound angles, etc. say, $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$ so as to distinguish the solution accurately. Also, we should know all the required values of standard angles say, \[{0^o},{30^o},{45^o},{60^o},{90^o},{180^o},{270^o},{360^o}\] respectively for each trigonometric term such as $\sin ,\cos ,\tan ,\cot ,\sec ,\cos ec$, etc. We should take care of the calculations so as to be sure of our final answer.
Complete step by step answer:
Since, we have given the expression as,
\[\tan 67{\dfrac{1}{2}^ \circ } + \cot 67{\dfrac{1}{2}^ \circ }\]
As a result, the given expression can also be written as,
\[\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } + \cot {\left( {\dfrac{{135}}{2}} \right)^ \circ }\]
Where, $\dfrac{{135}}{2} = 67$
Now, let us assume that \[\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } = \tan \theta \] for efficiency of the solution, we get
\[\tan \theta + \cot \theta \]
Since, we know that $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$
Hence,
$\tan 2\theta = \tan {135^ \circ } \\
\Rightarrow \tan 2\theta = \tan ({90^ \circ } + {45^ \circ }) \\ $
According to the trigonometric conditions of change in four different quadrants (the above terminology exists in second quadrant), we get
$\tan 2\theta = - \cot {45^ \circ } \\
\Rightarrow \tan 2\theta = - 1 \\ $
Where, $\cot {45^ \circ } = 1$
Now, hence considering the equation$\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$,
$\dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} = {\text{ }} - 1$
Solving the equation predominantly, we get
\[2\tan \theta = - 1(1 - {\tan ^2}\theta ) \\
\Rightarrow 2\tan \theta = {\tan ^2}\theta - 1 \\
\Rightarrow {\tan ^2}\theta - 2\tan \theta - 1 = 0 \\ \]
As a result, the above equation seems to be quadratic in terms of $\tan \theta $. Let, $\tan \theta = x$. The equation becomes,
\[{x^2} - 2x - 1 = 0\]
The equation does not exists real factors, hence solving it by factorisation formula,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Substituting the values in this equation, we get,
$\Rightarrow x = \dfrac{{ - ( - 2) \pm \sqrt {{{( - 2)}^2} - 4(1)( - 1)} }}{{2(1)}} \\
\Rightarrow x = \dfrac{{2 \pm \sqrt {4 + 4} }}{2} = \dfrac{{2 \pm \sqrt 8 }}{2} \\
\Rightarrow x = \dfrac{{2 \pm \sqrt {4 \times 2} }}{2} = \dfrac{{2 \pm 2\sqrt 2 }}{2} \\
\Rightarrow x = \dfrac{{2(1 \pm \sqrt 2 )}}{2} \\
\Rightarrow x = 1 \pm \sqrt 2 \\ $
Re-substituting the value of$x = \tan \theta $, we get
\[ \Rightarrow \tan \theta = 1 \pm \sqrt 2 \]
Considering the positive value of the equation (the angle never exists in negative standard), we get \[ \tan \theta = 1 + \sqrt 2 \].
Similarly, \[ \cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{1}{{1 + \sqrt 2 }}\]
Multiplying and dividing $1 - \sqrt 2 $ the above equation, we get
\[\Rightarrow \cot \theta = \dfrac{1}{{1 + \sqrt 2 }} \times \dfrac{{1 - \sqrt 2 }}{{1 - \sqrt 2 }} \\
\Rightarrow \cot \theta = \dfrac{{1 - \sqrt 2 }}{{{1^2} - {{\left( {\sqrt 2 } \right)}^2}}} \\
\Rightarrow \cot \theta = \dfrac{{1 - \sqrt 2 }}{{1 - 2}} \\ \]
Where, the algebraic identity $(a + b)(a - b) = {a^2} - {b^2}$ is been used,
\[\Rightarrow \cot \theta = - (1 - \sqrt 2 ) \\
\Rightarrow \cot \theta = \sqrt 2 - 1 \\ \]
Now, hence the given equation becomes,
i.e. \[\tan \theta + \cot \theta \]
Substituting the values that we have found in the above solution, we get
\[\tan \theta + \cot \theta = 1 + \sqrt 2 + \sqrt 2 - 1 \\
\Rightarrow \tan \theta + \cot \theta = 1 + \sqrt 2 + \sqrt 2 - 1 \\
\Rightarrow \tan \theta + \cot \theta = 2\sqrt 2 \\ \]
Re-Substitute the value of $\theta $assume earlier i.e. $\tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } = \theta $, we get the required solution
$ \therefore \tan {\left( {\dfrac{{135}}{2}} \right)^ \circ } + \cot {\left( {\dfrac{{135}}{2}} \right)^ \circ } = 2\sqrt 2 $
Hence, option A is correct.
Note: One must know how to convert the ‘tan’, ‘cot’, ‘sec’ and ‘cosec’ terms in trigonometric formulae for all the terms especially trigonometric ratios for double angle, triple angles, half angles, compound angles, etc. say, $\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}$ so as to distinguish the solution accurately. Also, we should know all the required values of standard angles say, \[{0^o},{30^o},{45^o},{60^o},{90^o},{180^o},{270^o},{360^o}\] respectively for each trigonometric term such as $\sin ,\cos ,\tan ,\cot ,\sec ,\cos ec$, etc. We should take care of the calculations so as to be sure of our final answer.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

