
Find the value of\[\tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ \].
A) 0
B) \[\dfrac{1}{\begin{array}{l}2\\\end{array}}\]
C) -1
D) 1
Answer
546.3k+ views
Hint:
Here we will use the concept of trigonometry. We will first use the formula of tangent of the sum of angles to form the given expression. Then we will substitute the angles of the given expression in the formula to simplify the formula and get the required answer
Formula used:
We will use the formula of the tangent of the sum of two angles is given by the formula as follows-\[\tan (A + B)\]=\[\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Complete step by step solution:
Now to find the value of \[\tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ \], we will take \[A = 100^\circ \] and \[B = 125^\circ \].
Thus by putting values for \[A\] and \[B\] in the above formula we will get,
\[\tan (100^\circ + 125^\circ ) = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}\]
\[\tan 225^\circ = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}\]
Now we know that, \[\tan 225^\circ = 1\].
Thus by putting value of \[\tan 225^\circ \] in the above equation, we get
\[1 = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}\]
Multiplying both sides of the above equation by \[\left( {1 - \tan 100^\circ \tan 125^\circ } \right)\] we will get,
\[\left( {1 - \tan 100^\circ \tan 125^\circ } \right)1 = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}\left( {1 - \tan 100^\circ \tan 125^\circ } \right)\]
\[1 - \tan 100^\circ \tan 125^\circ = \tan 100^\circ + \tan 125^\circ \]
Now adding \[\tan 100^\circ \tan 125^\circ \] on both sides of the equation, we get
\[1 = \tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ \]
Therefore we get the value of \[\tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ \] is 1
Hence option (D) is the correct option.
Note:
Tangent function – In any right triangle, the tangent of an angle is the length of the opposite side divided by the length of the adjacent side.
The tangent of an angle is defined to be its sine divided by its cosine: \[\tan A = \dfrac{{\sin A}}{{\cos A}}\].
Formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] can be derived from \[\dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}}\] where,
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\] and \[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\]
Here we used \[\tan 225^\circ = 1\] because we can write\[\tan 225^\circ \] as \[\tan \left( {\pi + 45^\circ } \right)\] which is equal to \[\tan 45^\circ \].
And we know that \[\tan 45^\circ = 1\].
Thus, we took \[\tan 225^\circ \] is equal to 1.
Here we will use the concept of trigonometry. We will first use the formula of tangent of the sum of angles to form the given expression. Then we will substitute the angles of the given expression in the formula to simplify the formula and get the required answer
Formula used:
We will use the formula of the tangent of the sum of two angles is given by the formula as follows-\[\tan (A + B)\]=\[\dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
Complete step by step solution:
Now to find the value of \[\tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ \], we will take \[A = 100^\circ \] and \[B = 125^\circ \].
Thus by putting values for \[A\] and \[B\] in the above formula we will get,
\[\tan (100^\circ + 125^\circ ) = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}\]
\[\tan 225^\circ = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}\]
Now we know that, \[\tan 225^\circ = 1\].
Thus by putting value of \[\tan 225^\circ \] in the above equation, we get
\[1 = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}\]
Multiplying both sides of the above equation by \[\left( {1 - \tan 100^\circ \tan 125^\circ } \right)\] we will get,
\[\left( {1 - \tan 100^\circ \tan 125^\circ } \right)1 = \dfrac{{\tan 100^\circ + \tan 125^\circ }}{{1 - \tan 100^\circ \tan 125^\circ }}\left( {1 - \tan 100^\circ \tan 125^\circ } \right)\]
\[1 - \tan 100^\circ \tan 125^\circ = \tan 100^\circ + \tan 125^\circ \]
Now adding \[\tan 100^\circ \tan 125^\circ \] on both sides of the equation, we get
\[1 = \tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ \]
Therefore we get the value of \[\tan 100^\circ + \tan 125^\circ + \tan 100^\circ \tan 125^\circ \] is 1
Hence option (D) is the correct option.
Note:
Tangent function – In any right triangle, the tangent of an angle is the length of the opposite side divided by the length of the adjacent side.
The tangent of an angle is defined to be its sine divided by its cosine: \[\tan A = \dfrac{{\sin A}}{{\cos A}}\].
Formula \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\] can be derived from \[\dfrac{{\sin \left( {A + B} \right)}}{{\cos \left( {A + B} \right)}}\] where,
\[\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B\] and \[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\]
Here we used \[\tan 225^\circ = 1\] because we can write\[\tan 225^\circ \] as \[\tan \left( {\pi + 45^\circ } \right)\] which is equal to \[\tan 45^\circ \].
And we know that \[\tan 45^\circ = 1\].
Thus, we took \[\tan 225^\circ \] is equal to 1.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

