Find the value of x which satisfies the equation \[\dfrac{5}{{x{\text{ }} - {\text{ }}5}}{\text{ + }}\dfrac{2}{{x{\text{ }} - {\text{ 2}}}}{\text{ = }}\dfrac{3}{{x{\text{ }} - {\text{ }}3}}{\text{ + }}\dfrac{4}{{x{\text{ }} - {\text{ }}4}}\].
A. 0, \[\dfrac{5}{2}\]
B. 1, \[\dfrac{9}{2}\]
C. 2, \[\dfrac{{11}}{2}\]
D. None of these
Last updated date: 26th Mar 2023
•
Total views: 307.8k
•
Views today: 6.84k
Answer
307.8k+ views
Hint: Let us try to reduce the given equation to a perfect polynomial equation of x. So, we can find the roots of that equation easily.
Complete step-by-step answer:
As we know that the given equation is,
$\Rightarrow$ \[\dfrac{5}{{x{\text{ }} - {\text{ }}5}}{\text{ + }}\dfrac{2}{{x{\text{ }} - {\text{ 2}}}}{\text{ = }}\dfrac{3}{{x{\text{ }} - {\text{ }}3}}{\text{ + }}\dfrac{4}{{x{\text{ }} - {\text{ }}4}}\] (1)
Now, we have to solve equation 1.
First, we had to reduce equation 1 to a perfect polynomial equation.
For that we had to take LCM on LHS and RHS of equation 1 and then cross-multiply both sides of that equation.
So, taking LCM on LHS and RHS of equation 1. We get,
$\Rightarrow$ \[\dfrac{{5\left( {x{\text{ }} - {\text{ 2}}} \right){\text{ }} + {\text{ 2}}\left( {x{\text{ }} - {\text{ 5}}} \right)}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{3\left( {x{\text{ }} - {\text{ 4}}} \right){\text{ }} + {\text{ }}4\left( {x{\text{ }} - {\text{ 3}}} \right)}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\] (2)
On solving the numerator of LHS and RHS of equation 2. We get,
$\Rightarrow$ \[\dfrac{{5x{\text{ }} - {\text{ }}10{\text{ }} + {\text{ 2}}x{\text{ }} - {\text{ }}10}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{3x{\text{ }} - {\text{ }}12{\text{ }} + {\text{ }}4x{\text{ }} - {\text{ }}12}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\]
$\Rightarrow$ \[\dfrac{{\left( {7x{\text{ }} - {\text{ }}20} \right)}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{\left( {7x{\text{ }} - {\text{ }}24} \right)}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\] (3)
Now cross-multiplying LHS and RHS of equation 3. To get the required polynomial equation of x.
$\Rightarrow$ \[\left( {7x{\text{ }} - {\text{ }}20} \right)\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right){\text{ = }}\left( {7x{\text{ }} - {\text{ }}24} \right)\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\] (4)
Now we had to solve equation 3.
So, solving equation 3 step by step.
Multiplying \[\left( {7x{\text{ }} - {\text{ }}20} \right)\] and \[\left( {x{\text{ }} - {\text{ 3}}} \right)\] in LHS of equation 3.
And multiplying \[\left( {7x{\text{ }} - {\text{ }}24} \right)\] and \[\left( {x{\text{ }} - {\text{ 5}}} \right)\] in RHS of equation 3. We get,
$\Rightarrow$ \[\left( {7{x^2}{\text{ }} - {\text{ }}21x{\text{ }} - {\text{ }}20x{\text{ }} + {\text{ }}60} \right)\left( {x{\text{ }} - {\text{ }}4} \right) = \left( {7{x^2}{\text{ }} - {\text{ }}35x{\text{ }} - {\text{ }}24x{\text{ }} + {\text{ }}120} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\]
$\Rightarrow$ \[\left( {7{x^2}{\text{ }} - {\text{ 4}}1x{\text{ }} + {\text{ }}60} \right)\left( {x{\text{ }} - {\text{ }}4} \right) = \left( {7{x^2}{\text{ }} - {\text{ }}59x{\text{ }} + {\text{ }}120} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\]
Now solving the LHS and RHS of the above equation. We get,
$\Rightarrow$ \[\left( {7{x^3}{\text{ }} - {\text{ 4}}1{x^2}{\text{ }} + {\text{ }}60x} \right){\text{ }} - {\text{ }}\left( {28{x^2}{\text{ }} - {\text{ 164}}x{\text{ + 24}}0} \right){\text{ }} = {\text{ }}\left( {7{x^3}{\text{ }} - {\text{ }}59{x^2}{\text{ }} + {\text{ }}120x} \right){\text{ }} - {\text{ }}\left( {14{x^2}{\text{ }} - {\text{ 118}}x{\text{ + }}240} \right)\]
On solving the above equation. We get,
$\Rightarrow$ \[7{x^3}{\text{ }} - {\text{ 69}}{x^2}{\text{ + 224}}x{\text{ }} - {\text{ 24}}0{\text{ }} = {\text{ }}7{x^3}{\text{ }} - {\text{ 73}}{x^2}{\text{ }} + {\text{ }}238x{\text{ }} - {\text{ }}240\] (5)
Now subtracting RHS from the LHS of equation 5. We get,
$\Rightarrow$ \[4{x^2}{\text{ }} - {\text{ }}14x{\text{ }} = {\text{ }}0\]
Now we have to solve the above quadratic equation of x. To get the required value of x.
Taking x common from LHS of the above equation. We get,
$\Rightarrow$ x(4x – 14) = 0
So, from the above equation we get x = 0, \[\dfrac{{14}}{4}\].
Hence, the correct value of x that satisfies the given equation will be x = 0, \[\dfrac{7}{2}\].
So, the correct option will be D.
Note: Whenever we come up with this type of problem where we are given with an equation in which variable x is in the denominator of the equation. Then first we take the LCM of LHS and RHS of the given equation. And then we cross-multiply both sides of the equation. After that we try to manipulate the equation. So, that we can get a perfect polynomial equation. After that it will be easy to find the solution of a quadratic or cubic.
Complete step-by-step answer:
As we know that the given equation is,
$\Rightarrow$ \[\dfrac{5}{{x{\text{ }} - {\text{ }}5}}{\text{ + }}\dfrac{2}{{x{\text{ }} - {\text{ 2}}}}{\text{ = }}\dfrac{3}{{x{\text{ }} - {\text{ }}3}}{\text{ + }}\dfrac{4}{{x{\text{ }} - {\text{ }}4}}\] (1)
Now, we have to solve equation 1.
First, we had to reduce equation 1 to a perfect polynomial equation.
For that we had to take LCM on LHS and RHS of equation 1 and then cross-multiply both sides of that equation.
So, taking LCM on LHS and RHS of equation 1. We get,
$\Rightarrow$ \[\dfrac{{5\left( {x{\text{ }} - {\text{ 2}}} \right){\text{ }} + {\text{ 2}}\left( {x{\text{ }} - {\text{ 5}}} \right)}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{3\left( {x{\text{ }} - {\text{ 4}}} \right){\text{ }} + {\text{ }}4\left( {x{\text{ }} - {\text{ 3}}} \right)}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\] (2)
On solving the numerator of LHS and RHS of equation 2. We get,
$\Rightarrow$ \[\dfrac{{5x{\text{ }} - {\text{ }}10{\text{ }} + {\text{ 2}}x{\text{ }} - {\text{ }}10}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{3x{\text{ }} - {\text{ }}12{\text{ }} + {\text{ }}4x{\text{ }} - {\text{ }}12}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\]
$\Rightarrow$ \[\dfrac{{\left( {7x{\text{ }} - {\text{ }}20} \right)}}{{\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)}}{\text{ = }}\dfrac{{\left( {7x{\text{ }} - {\text{ }}24} \right)}}{{\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right)}}\] (3)
Now cross-multiplying LHS and RHS of equation 3. To get the required polynomial equation of x.
$\Rightarrow$ \[\left( {7x{\text{ }} - {\text{ }}20} \right)\left( {x{\text{ }} - {\text{ 3}}} \right)\left( {x{\text{ }} - {\text{ }}4} \right){\text{ = }}\left( {7x{\text{ }} - {\text{ }}24} \right)\left( {x{\text{ }} - {\text{ 5}}} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\] (4)
Now we had to solve equation 3.
So, solving equation 3 step by step.
Multiplying \[\left( {7x{\text{ }} - {\text{ }}20} \right)\] and \[\left( {x{\text{ }} - {\text{ 3}}} \right)\] in LHS of equation 3.
And multiplying \[\left( {7x{\text{ }} - {\text{ }}24} \right)\] and \[\left( {x{\text{ }} - {\text{ 5}}} \right)\] in RHS of equation 3. We get,
$\Rightarrow$ \[\left( {7{x^2}{\text{ }} - {\text{ }}21x{\text{ }} - {\text{ }}20x{\text{ }} + {\text{ }}60} \right)\left( {x{\text{ }} - {\text{ }}4} \right) = \left( {7{x^2}{\text{ }} - {\text{ }}35x{\text{ }} - {\text{ }}24x{\text{ }} + {\text{ }}120} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\]
$\Rightarrow$ \[\left( {7{x^2}{\text{ }} - {\text{ 4}}1x{\text{ }} + {\text{ }}60} \right)\left( {x{\text{ }} - {\text{ }}4} \right) = \left( {7{x^2}{\text{ }} - {\text{ }}59x{\text{ }} + {\text{ }}120} \right)\left( {x{\text{ }} - {\text{ 2}}} \right)\]
Now solving the LHS and RHS of the above equation. We get,
$\Rightarrow$ \[\left( {7{x^3}{\text{ }} - {\text{ 4}}1{x^2}{\text{ }} + {\text{ }}60x} \right){\text{ }} - {\text{ }}\left( {28{x^2}{\text{ }} - {\text{ 164}}x{\text{ + 24}}0} \right){\text{ }} = {\text{ }}\left( {7{x^3}{\text{ }} - {\text{ }}59{x^2}{\text{ }} + {\text{ }}120x} \right){\text{ }} - {\text{ }}\left( {14{x^2}{\text{ }} - {\text{ 118}}x{\text{ + }}240} \right)\]
On solving the above equation. We get,
$\Rightarrow$ \[7{x^3}{\text{ }} - {\text{ 69}}{x^2}{\text{ + 224}}x{\text{ }} - {\text{ 24}}0{\text{ }} = {\text{ }}7{x^3}{\text{ }} - {\text{ 73}}{x^2}{\text{ }} + {\text{ }}238x{\text{ }} - {\text{ }}240\] (5)
Now subtracting RHS from the LHS of equation 5. We get,
$\Rightarrow$ \[4{x^2}{\text{ }} - {\text{ }}14x{\text{ }} = {\text{ }}0\]
Now we have to solve the above quadratic equation of x. To get the required value of x.
Taking x common from LHS of the above equation. We get,
$\Rightarrow$ x(4x – 14) = 0
So, from the above equation we get x = 0, \[\dfrac{{14}}{4}\].
Hence, the correct value of x that satisfies the given equation will be x = 0, \[\dfrac{7}{2}\].
So, the correct option will be D.
Note: Whenever we come up with this type of problem where we are given with an equation in which variable x is in the denominator of the equation. Then first we take the LCM of LHS and RHS of the given equation. And then we cross-multiply both sides of the equation. After that we try to manipulate the equation. So, that we can get a perfect polynomial equation. After that it will be easy to find the solution of a quadratic or cubic.
Recently Updated Pages
If abc are pthqth and rth terms of a GP then left fraccb class 11 maths JEE_Main

If the pthqth and rth term of a GP are abc respectively class 11 maths JEE_Main

If abcdare any four consecutive coefficients of any class 11 maths JEE_Main

If A1A2 are the two AMs between two numbers a and b class 11 maths JEE_Main

If pthqthrth and sth terms of an AP be in GP then p class 11 maths JEE_Main

One root of the equation cos x x + frac12 0 lies in class 11 maths JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
