
Find the value of x, such that x is a real number, if $\left[ \begin{matrix}
x & -5 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
4 \\
1 \\
\end{matrix} \right]=0$ .
Answer
613.2k+ views
Hint:In this question, we will use the multiplication rule of the matrix to evaluate the expression on the left hand side and use equality of the matrix to find value of x.
Complete step-by-step answer:
In a given question, we will first multiply matrices given on the left hand side of the equation.
Let us first multiply matrix $\left[ \begin{matrix}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3 \\
\end{matrix} \right]$ with $\left[ \begin{matrix}
x \\
4 \\
1 \\
\end{matrix} \right]$
For this, we will multiply elements of the first row of first matrix with corresponding elements of the first column of second matrix and add them up. We will then repeat the same process with the second row and put value in the second element of the product matrix. And lastly with third rows and put value in the third element of product matrix.
Hence, our product for these two matrices will be $\left[ \begin{matrix}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
4 \\
1 \\
\end{matrix} \right]=0$
\[\begin{align}
& =\left[ \begin{matrix}
1\times x+0\times 4+2\times 1 \\
0\times x+2\times 4+1\times 1 \\
2\times x+0\times 4+3\times 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
x+0+2 \\
0+8+1 \\
2x+0+3 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
x+2 \\
9 \\
2x+3 \\
\end{matrix} \right] \\
\end{align}\]
Now, we will multiply the matrix $\left[ \begin{matrix}
x & -5 & -1 \\
\end{matrix} \right]$ with matrix given above, we get,
\[\begin{align}
& \left[ \begin{matrix}
x & -5 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
x+2 \\
9 \\
2x+3 \\
\end{matrix} \right] \\
& =\left[ x\left( x+2 \right)+\left( -5 \right)\times 9+\left( -1 \right)\times \left( 2x+3 \right) \right] \\
\end{align}\]
Applying distributive law, we get,
\[\begin{align}
& {{x}^{2}}+2x-45-2x-3 \\
& ={{x}^{2}}-49 \\
\end{align}\]
Now, comparing this value, which is value of left hand side of given equation with value of right hand side of the equation, which is zero, we get,
${{x}^{2}}-49=0$
Add 49 on both sides of the equation. We get, ${{x}^{2}}=49$ .
Taking root on both sides of the equation, we get,
$\begin{align}
& \sqrt{{{x}^{2}}}=\pm \sqrt{49} \\
& \Rightarrow x=\pm 7 \\
\end{align}$
$\Rightarrow x=7$ or $-7$
Hence, the value of x in the given equation is $\pm 7$ .
Note: In this type of question, before starting the multiplication of matrices, check the order of matrices and see if both matrices are multiplied or not.Two matrices can be multiplied if the number of columns in the first matrix is equal to the number of rows in the second one,then matrix multiplication is possible.
Complete step-by-step answer:
In a given question, we will first multiply matrices given on the left hand side of the equation.
Let us first multiply matrix $\left[ \begin{matrix}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3 \\
\end{matrix} \right]$ with $\left[ \begin{matrix}
x \\
4 \\
1 \\
\end{matrix} \right]$
For this, we will multiply elements of the first row of first matrix with corresponding elements of the first column of second matrix and add them up. We will then repeat the same process with the second row and put value in the second element of the product matrix. And lastly with third rows and put value in the third element of product matrix.
Hence, our product for these two matrices will be $\left[ \begin{matrix}
1 & 0 & 2 \\
0 & 2 & 1 \\
2 & 0 & 3 \\
\end{matrix} \right]\left[ \begin{matrix}
x \\
4 \\
1 \\
\end{matrix} \right]=0$
\[\begin{align}
& =\left[ \begin{matrix}
1\times x+0\times 4+2\times 1 \\
0\times x+2\times 4+1\times 1 \\
2\times x+0\times 4+3\times 1 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
x+0+2 \\
0+8+1 \\
2x+0+3 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
x+2 \\
9 \\
2x+3 \\
\end{matrix} \right] \\
\end{align}\]
Now, we will multiply the matrix $\left[ \begin{matrix}
x & -5 & -1 \\
\end{matrix} \right]$ with matrix given above, we get,
\[\begin{align}
& \left[ \begin{matrix}
x & -5 & -1 \\
\end{matrix} \right]\left[ \begin{matrix}
x+2 \\
9 \\
2x+3 \\
\end{matrix} \right] \\
& =\left[ x\left( x+2 \right)+\left( -5 \right)\times 9+\left( -1 \right)\times \left( 2x+3 \right) \right] \\
\end{align}\]
Applying distributive law, we get,
\[\begin{align}
& {{x}^{2}}+2x-45-2x-3 \\
& ={{x}^{2}}-49 \\
\end{align}\]
Now, comparing this value, which is value of left hand side of given equation with value of right hand side of the equation, which is zero, we get,
${{x}^{2}}-49=0$
Add 49 on both sides of the equation. We get, ${{x}^{2}}=49$ .
Taking root on both sides of the equation, we get,
$\begin{align}
& \sqrt{{{x}^{2}}}=\pm \sqrt{49} \\
& \Rightarrow x=\pm 7 \\
\end{align}$
$\Rightarrow x=7$ or $-7$
Hence, the value of x in the given equation is $\pm 7$ .
Note: In this type of question, before starting the multiplication of matrices, check the order of matrices and see if both matrices are multiplied or not.Two matrices can be multiplied if the number of columns in the first matrix is equal to the number of rows in the second one,then matrix multiplication is possible.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

