
Find the value of x satisfying the following inverse trigonometric equation
$2{{\tan }^{-1}}\cos x={{\tan }^{-1}}\left( 2\csc x \right)$
Answer
598.5k+ views
Hint: Take tan on both sides of the equation and use the fact that $\tan \left( {{\tan }^{-1}}x \right)=x$ and $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$. Use $1-{{\cos }^{2}}x={{\sin }^{2}}x$ and $\csc x=\dfrac{1}{\sin x}$ and hence prove that $\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{\cos x}{{{\sin }^{2}}x}$ and $\tan \left( {{\tan }^{-1}}\left( 2\csc x \right) \right)=\dfrac{2}{\sin x}$. Hence prove that the given equation is equivalent to $\cos x=\sin x$. Divide both sides of the equation by cosx and use the fact that if $\tan x=\tan y$ then $x=n\pi +y,n\in \mathbb{Z}$. Remove the extraneous roots and hence find the solution of the given equation. Verify by substituting in the given equation.
Complete step-by-step solution -
We have $2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)$
Taking tangents on both sides, we get
$\tan \left( 2{{\tan }^{-1}}\cos x \right)=\tan \left( {{\tan }^{-1}}\left( 2\csc x \right) \right)\text{ }\left( i \right)$
Simplifying $\tan \left( 2{{\tan }^{-1}}\cos x \right)$
We know that $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$
Hence, we have
$\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{2\tan \left( {{\tan }^{-1}}\cos x \right)}{1-{{\tan }^{2}}\left( {{\tan }^{-1}}\cos x \right)}$
We know that $\tan \left( {{\tan }^{-1}}x \right)=x\forall x\in \mathbb{R}$
Using the above identity, we get
$\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{2\cos x}{1-{{\cos }^{2}}x}$
We know that $1-{{\cos }^{2}}x={{\sin }^{2}}x$
Hence, we have
$\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{2\cos x}{{{\sin }^{2}}x}$
Simplifying $\tan \left( {{\tan }^{-1}}2\csc x \right)$
We know that $\tan \left( {{\tan }^{-1}}x \right)=x\forall x\in \mathbb{R}$
Hence, we have
$\tan \left( {{\tan }^{-1}}2\csc x \right)=2\csc x$
We know that $\csc x=\dfrac{1}{\sin x}$
Using the above identity, we get
$\tan \left( {{\tan }^{-1}}\left( 2\csc x \right) \right)=\dfrac{2}{\sin x}$
Hence the equation(i) becomes
$\dfrac{\cos x}{{{\sin }^{2}}x}=\dfrac{1}{\sin x}$
Multiplying both sides by ${{\sin }^{2}}x$, we get
$\cos x=\sin x$
Dividing both sides by cosx, we get
$\dfrac{\sin x}{\cos x}=1$
We know that $\dfrac{\sin x}{\cos x}=\tan x$
Hence, we have
$\tan x=1$
We know that $\tan \left( \dfrac{\pi }{4} \right)=1$
Hence, we have
$\tan x=\tan \left( \dfrac{\pi }{4} \right)$
We know that if tanx=tany, then $x=n\pi +y,n\in \mathbb{Z}$
Hence, we have
$x=n\pi +\dfrac{\pi }{4},n\in \mathbb{Z}$ which is the required solution of the given equation.
Note: Verification:
We have if n is odd
$\cos \left( x \right)=\dfrac{-1}{\sqrt{2}}$ and $\csc x=-\sqrt{2}$
Hence, we have
${{\tan }^{-1}}\left( 2\csc x \right)=-{{\tan }^{-1}}2\sqrt{2}=-{{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{\sqrt{2}}}{1-{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}} \right)=-2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}}$ and $2{{\tan }^{-1}}\cos x=-2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}}$
Hence, we have
${{\tan }^{-1}}\left( 2\csc x \right)=2{{\tan }^{-1}}\left( \cos x \right)$
Similarly when n is even ${{\tan }^{-1}}\left( 2\csc x \right)=2{{\tan }^{-1}}\left( \cos x \right)$
Hence our answer is verified to be correct.
Complete step-by-step solution -
We have $2{{\tan }^{-1}}\left( \cos x \right)={{\tan }^{-1}}\left( 2\csc x \right)$
Taking tangents on both sides, we get
$\tan \left( 2{{\tan }^{-1}}\cos x \right)=\tan \left( {{\tan }^{-1}}\left( 2\csc x \right) \right)\text{ }\left( i \right)$
Simplifying $\tan \left( 2{{\tan }^{-1}}\cos x \right)$
We know that $\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x}$
Hence, we have
$\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{2\tan \left( {{\tan }^{-1}}\cos x \right)}{1-{{\tan }^{2}}\left( {{\tan }^{-1}}\cos x \right)}$
We know that $\tan \left( {{\tan }^{-1}}x \right)=x\forall x\in \mathbb{R}$
Using the above identity, we get
$\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{2\cos x}{1-{{\cos }^{2}}x}$
We know that $1-{{\cos }^{2}}x={{\sin }^{2}}x$
Hence, we have
$\tan \left( 2{{\tan }^{-1}}\cos x \right)=\dfrac{2\cos x}{{{\sin }^{2}}x}$
Simplifying $\tan \left( {{\tan }^{-1}}2\csc x \right)$
We know that $\tan \left( {{\tan }^{-1}}x \right)=x\forall x\in \mathbb{R}$
Hence, we have
$\tan \left( {{\tan }^{-1}}2\csc x \right)=2\csc x$
We know that $\csc x=\dfrac{1}{\sin x}$
Using the above identity, we get
$\tan \left( {{\tan }^{-1}}\left( 2\csc x \right) \right)=\dfrac{2}{\sin x}$
Hence the equation(i) becomes
$\dfrac{\cos x}{{{\sin }^{2}}x}=\dfrac{1}{\sin x}$
Multiplying both sides by ${{\sin }^{2}}x$, we get
$\cos x=\sin x$
Dividing both sides by cosx, we get
$\dfrac{\sin x}{\cos x}=1$
We know that $\dfrac{\sin x}{\cos x}=\tan x$
Hence, we have
$\tan x=1$
We know that $\tan \left( \dfrac{\pi }{4} \right)=1$
Hence, we have
$\tan x=\tan \left( \dfrac{\pi }{4} \right)$
We know that if tanx=tany, then $x=n\pi +y,n\in \mathbb{Z}$
Hence, we have
$x=n\pi +\dfrac{\pi }{4},n\in \mathbb{Z}$ which is the required solution of the given equation.
Note: Verification:
We have if n is odd
$\cos \left( x \right)=\dfrac{-1}{\sqrt{2}}$ and $\csc x=-\sqrt{2}$
Hence, we have
${{\tan }^{-1}}\left( 2\csc x \right)=-{{\tan }^{-1}}2\sqrt{2}=-{{\tan }^{-1}}\left( \dfrac{2\times \dfrac{1}{\sqrt{2}}}{1-{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}} \right)=-2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}}$ and $2{{\tan }^{-1}}\cos x=-2{{\tan }^{-1}}\dfrac{1}{\sqrt{2}}$
Hence, we have
${{\tan }^{-1}}\left( 2\csc x \right)=2{{\tan }^{-1}}\left( \cos x \right)$
Similarly when n is even ${{\tan }^{-1}}\left( 2\csc x \right)=2{{\tan }^{-1}}\left( \cos x \right)$
Hence our answer is verified to be correct.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

