
Find the value of x in the function-
$\dfrac{\mathrm x-3}{\mathrm x-4}+\dfrac{\mathrm x-5}{\mathrm x-6}=\dfrac{10}3,\;\mathrm x\neq4,\;6$
Answer
607.8k+ views
Hint:This is a direct question of a linear equation in one variable where we have to find the value of the variable. General algebraic formulas will be used. Also, quadratic formula can be used which is given by-
$=\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}$
Complete step-by-step answer:
It is given that
$\dfrac{\mathrm x-3}{\mathrm x-4}+\dfrac{\mathrm x-5}{\mathrm x-6}=\dfrac{10}3$
Taking the LCM, we can write that-
$\dfrac{\left(\mathrm x-3\right)\left(\mathrm x-6\right)+\left(\mathrm x-4\right)\left(\mathrm x-5\right)}{\left(\mathrm x-4\right)\left(\mathrm x-6\right)}=\dfrac{10}3\\\\$
On cross multiplying and opening the brackets we get,
$3\left( {{{\text{x}}^2} - 9{\text{x}} + 18 + {{\text{x}}^2} - 9{\text{x}} + 20} \right)\; = \;10\left( {{{\text{x}}^2} - 10{\text{x}} + 24} \right)$
$6{{\text{x}}^2} - 54{\text{x}} + 114 = 10{{\text{x}}^2} - 100{\text{x}} + 240$
$4{{\text{x}}^2} - 46{\text{x}} + 126 = 0$
$Dividing\;the\;equation\;by\;2$
$2{{\text{x}}^2} - 23{\text{x}} + 63 = 0$
$2{{\text{x}}^2} - 14{\text{x}} - 9{\text{x}} + 63 = 0$
$2x(x - 7) - 9(x - 7) = 0$
$(2x - 9)(x - 7) = 0$
$\mathrm x=7,\dfrac{\;9}2$
These are the values of x, and the required answer.
Note: We can solve the equation using quadratic formula as well but it is a calculative method. It increases the chances of making an error. We should use it only when splitting the middle term is not possible.
$=\dfrac{-\mathrm b\pm\sqrt{\mathrm b^2-4\mathrm{ac}}}{2\mathrm a}$
Complete step-by-step answer:
It is given that
$\dfrac{\mathrm x-3}{\mathrm x-4}+\dfrac{\mathrm x-5}{\mathrm x-6}=\dfrac{10}3$
Taking the LCM, we can write that-
$\dfrac{\left(\mathrm x-3\right)\left(\mathrm x-6\right)+\left(\mathrm x-4\right)\left(\mathrm x-5\right)}{\left(\mathrm x-4\right)\left(\mathrm x-6\right)}=\dfrac{10}3\\\\$
On cross multiplying and opening the brackets we get,
$3\left( {{{\text{x}}^2} - 9{\text{x}} + 18 + {{\text{x}}^2} - 9{\text{x}} + 20} \right)\; = \;10\left( {{{\text{x}}^2} - 10{\text{x}} + 24} \right)$
$6{{\text{x}}^2} - 54{\text{x}} + 114 = 10{{\text{x}}^2} - 100{\text{x}} + 240$
$4{{\text{x}}^2} - 46{\text{x}} + 126 = 0$
$Dividing\;the\;equation\;by\;2$
$2{{\text{x}}^2} - 23{\text{x}} + 63 = 0$
$2{{\text{x}}^2} - 14{\text{x}} - 9{\text{x}} + 63 = 0$
$2x(x - 7) - 9(x - 7) = 0$
$(2x - 9)(x - 7) = 0$
$\mathrm x=7,\dfrac{\;9}2$
These are the values of x, and the required answer.
Note: We can solve the equation using quadratic formula as well but it is a calculative method. It increases the chances of making an error. We should use it only when splitting the middle term is not possible.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

