
Find the value of $x$ if $ \left[ \begin{matrix}
1 & x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
3 & 2 & 5 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=O $\[\]
Answer
508.5k+ views
Hint: Name the three multiplied matrices on the left hand side as $XYZ$. First multiply $X\times Y$ and then $XY\times Z$. Use the condition of equality between matrices to obtain a linear equation in $x$. Solve it to find the value of $x$.
Complete step by step answer:
The given equation with matrices involving an unknown $x$ is
\[\begin{align}
& \left[ \begin{matrix}
1 & x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
3 & 2 & 5 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=O...(1) \\
& \Rightarrow XYZ=O \\
\end{align}\]
Where $X=\left[ \begin{matrix}
1 & x & 1 \\
\end{matrix} \right],Y=\left[ \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
3 & 2 & 5 \\
\end{matrix} \right],Z=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]$ and $O$ is zero matrix with all the entries as zeros. \[\]
We know from the multiplication of matrices that two matrices $A,B$ can only be multiplied when they have compatible order. The order of a matrix is defined as $m\times n$ where $m$ is the number of rows and $n$ is the number of column. So let $A,B$ be a matrix order $m\times n$and $A,B$ be matrix of order $q\times r$. The order of $A$ and $B$ are compatible if number columns of first matrix is equal to the number of rows of second matrix in the order of multiplication. In symbols $n=q$. The order of the product matrix is $m\times r$ \[\]
Let be $A=\mathop{\left[ {{a}_{ij}} \right]}_{i=1,j=1}^{i=m,j=n}$ be the first matrix with entries ${{a}_{ij}}$ and $B=\mathop{\left[ {{b}_{ij}} \right]}_{i=1,j=1}^{i=q,j=r}$ be the second matrix with entries ${{b}_{ij}}$. We denote their product as $C=AB$. Then the entries of $C$ are given by
\[\mathop{\left[ {{c}_{ij}} \right]}_{i=1,j=1}^{i=m,j=r}={{a}_{i1}}{{b}_{1j}}+{{a}_{i2}}{{b}_{2j}}+...+{{a}_{in}}{{b}_{nj}}\]
Where $i$ is the row and $j$ is the column of the entry.\[\]
The matrices $A$ and $B$ are equal if and only if they are of same order and ${{a}_{ij}}={{b}_{ij}}$. \[\]
As the matrix $X$is of the order $1\times 3$ and the matrix $Y$ is of the order $3\times 3$. Then $XY$ will have the order $1\times 3$. Let us multiply the first two matrices row by column in the equation (1)
\[\begin{align}
& \left[ \begin{matrix}
1+4x+3 & 2+5x+2 & 3+6x+5 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=O. \\
& \Rightarrow \left[ \begin{matrix}
4x+4 & 5x+4 & 6x+8 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=O \\
\end{align}\]
Now shall multiply $XY$ and $Z$. The order of $XY$ is is $1\times 3$ and the order of $Z$ is $3\times 1$.So the order of $XYZ$ will be $1\times 1$. Let us multiply they row by column
\[\begin{align}
& .\left[ \begin{matrix}
4x+4 & 5x+4 & 6x+8 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=O \\
& \Rightarrow \left[ 4x+4+2\left( 5x+4 \right)+3\left( 6x+8 \right) \right]=O \\
\end{align}\]
We use the condition of equality between matrices,
\[\begin{align}
& 4x+4+2\left( 5x+4 \right)+3\left( 6x+8 \right)=\left[ 0 \right] \\
& \Rightarrow 32x+36=0 \\
& \Rightarrow x=\dfrac{-36}{32}=\dfrac{-9}{8} \\
\end{align}\]
So the value of $x$ is $\dfrac{-9}{8}$. \[\]
Note: It is to be noted that matrix multiplication is not a commutative or associative operation that means matrix can only be multiplied when they are in particular order. The matrix $X$ is a row matrix or row vector. The matrix $Y$ is a column matrix or column vector. A vector is a matrix with dimension $n\times 1$ or $1\times n.$
Complete step by step answer:
The given equation with matrices involving an unknown $x$ is
\[\begin{align}
& \left[ \begin{matrix}
1 & x & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
3 & 2 & 5 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=O...(1) \\
& \Rightarrow XYZ=O \\
\end{align}\]
Where $X=\left[ \begin{matrix}
1 & x & 1 \\
\end{matrix} \right],Y=\left[ \begin{matrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
3 & 2 & 5 \\
\end{matrix} \right],Z=\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]$ and $O$ is zero matrix with all the entries as zeros. \[\]
We know from the multiplication of matrices that two matrices $A,B$ can only be multiplied when they have compatible order. The order of a matrix is defined as $m\times n$ where $m$ is the number of rows and $n$ is the number of column. So let $A,B$ be a matrix order $m\times n$and $A,B$ be matrix of order $q\times r$. The order of $A$ and $B$ are compatible if number columns of first matrix is equal to the number of rows of second matrix in the order of multiplication. In symbols $n=q$. The order of the product matrix is $m\times r$ \[\]
Let be $A=\mathop{\left[ {{a}_{ij}} \right]}_{i=1,j=1}^{i=m,j=n}$ be the first matrix with entries ${{a}_{ij}}$ and $B=\mathop{\left[ {{b}_{ij}} \right]}_{i=1,j=1}^{i=q,j=r}$ be the second matrix with entries ${{b}_{ij}}$. We denote their product as $C=AB$. Then the entries of $C$ are given by
\[\mathop{\left[ {{c}_{ij}} \right]}_{i=1,j=1}^{i=m,j=r}={{a}_{i1}}{{b}_{1j}}+{{a}_{i2}}{{b}_{2j}}+...+{{a}_{in}}{{b}_{nj}}\]
Where $i$ is the row and $j$ is the column of the entry.\[\]
The matrices $A$ and $B$ are equal if and only if they are of same order and ${{a}_{ij}}={{b}_{ij}}$. \[\]
As the matrix $X$is of the order $1\times 3$ and the matrix $Y$ is of the order $3\times 3$. Then $XY$ will have the order $1\times 3$. Let us multiply the first two matrices row by column in the equation (1)
\[\begin{align}
& \left[ \begin{matrix}
1+4x+3 & 2+5x+2 & 3+6x+5 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=O. \\
& \Rightarrow \left[ \begin{matrix}
4x+4 & 5x+4 & 6x+8 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=O \\
\end{align}\]
Now shall multiply $XY$ and $Z$. The order of $XY$ is is $1\times 3$ and the order of $Z$ is $3\times 1$.So the order of $XYZ$ will be $1\times 1$. Let us multiply they row by column
\[\begin{align}
& .\left[ \begin{matrix}
4x+4 & 5x+4 & 6x+8 \\
\end{matrix} \right]\left[ \begin{matrix}
1 \\
2 \\
3 \\
\end{matrix} \right]=O \\
& \Rightarrow \left[ 4x+4+2\left( 5x+4 \right)+3\left( 6x+8 \right) \right]=O \\
\end{align}\]
We use the condition of equality between matrices,
\[\begin{align}
& 4x+4+2\left( 5x+4 \right)+3\left( 6x+8 \right)=\left[ 0 \right] \\
& \Rightarrow 32x+36=0 \\
& \Rightarrow x=\dfrac{-36}{32}=\dfrac{-9}{8} \\
\end{align}\]
So the value of $x$ is $\dfrac{-9}{8}$. \[\]
Note: It is to be noted that matrix multiplication is not a commutative or associative operation that means matrix can only be multiplied when they are in particular order. The matrix $X$ is a row matrix or row vector. The matrix $Y$ is a column matrix or column vector. A vector is a matrix with dimension $n\times 1$ or $1\times n.$
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE
