
Find the value of x if \[\left| {\begin{array}{*{20}{c}}
a&a&x \\
m&m&m \\
b&x&b
\end{array}} \right| = 0\]
A) a
B) b
C) a-b
D) m
This question has multiple correct answers.
Answer
592.8k+ views
Hint: In these types of questions you first have to see what elements of the matrix are the same. Then see what elements you can take common. Then apply some operations on the determinant like subtracting two rows, adding two columns etc. Simplify the determinant and then expand.
Complete step-by-step answer:
Det. \[\left| {\begin{array}{*{20}{c}}
a&a&x \\
m&m&m \\
b&x&b
\end{array}} \right| = 0\]
Here , we have one complete row of m.
∴ taking m common, we get
\[m\left| {\begin{array}{*{20}{c}}
a&a&x \\
1&1&1 \\
b&x&b
\end{array}} \right| = 0\]
Now\[{c_2} \to {c_2} - {c_1}\] and \[{c_3} \to {c_3} - {c_1}\]
\[m\left| {\begin{array}{*{20}{c}}
a&0&{x - a} \\
1&0&0 \\
b&{x - b}&0
\end{array}} \right| = 0\]
Now expand along row 2, we get
\[m\left[ { - 1\left| {\begin{array}{*{20}{c}}
0&{x - a} \\
{x - b}&0
\end{array}} \right| + 0 + 0} \right] = 0\]
\[m\left[ { - \left( { - \left( {x - a} \right)\left( {x - b} \right)} \right)} \right] = 0\]
\[m\left( {x - a} \right)\left( {x - b} \right) = 0\]
This means m=0, (x-a) = 0 and (x-b) = 0
∴ x can have two values x = a and x = b.
∴ we have two correct options ‘A’ and ‘B’.
Note: For simplifying the determinant, we have to make as many elements of the determinant zero as possible. While applying the operations we can multiply some scalar quantities with the rows and columns to make the elements zero. Then expand through the row or the columns whose maximum no. of elements are zero for easy calculations.
Complete step-by-step answer:
Det. \[\left| {\begin{array}{*{20}{c}}
a&a&x \\
m&m&m \\
b&x&b
\end{array}} \right| = 0\]
Here , we have one complete row of m.
∴ taking m common, we get
\[m\left| {\begin{array}{*{20}{c}}
a&a&x \\
1&1&1 \\
b&x&b
\end{array}} \right| = 0\]
Now\[{c_2} \to {c_2} - {c_1}\] and \[{c_3} \to {c_3} - {c_1}\]
\[m\left| {\begin{array}{*{20}{c}}
a&0&{x - a} \\
1&0&0 \\
b&{x - b}&0
\end{array}} \right| = 0\]
Now expand along row 2, we get
\[m\left[ { - 1\left| {\begin{array}{*{20}{c}}
0&{x - a} \\
{x - b}&0
\end{array}} \right| + 0 + 0} \right] = 0\]
\[m\left[ { - \left( { - \left( {x - a} \right)\left( {x - b} \right)} \right)} \right] = 0\]
\[m\left( {x - a} \right)\left( {x - b} \right) = 0\]
This means m=0, (x-a) = 0 and (x-b) = 0
∴ x can have two values x = a and x = b.
∴ we have two correct options ‘A’ and ‘B’.
Note: For simplifying the determinant, we have to make as many elements of the determinant zero as possible. While applying the operations we can multiply some scalar quantities with the rows and columns to make the elements zero. Then expand through the row or the columns whose maximum no. of elements are zero for easy calculations.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

