
Find the value of x if \[\left| {\begin{array}{*{20}{c}}
a&a&x \\
m&m&m \\
b&x&b
\end{array}} \right| = 0\]
A) a
B) b
C) a-b
D) m
This question has multiple correct answers.
Answer
602.4k+ views
Hint: In these types of questions you first have to see what elements of the matrix are the same. Then see what elements you can take common. Then apply some operations on the determinant like subtracting two rows, adding two columns etc. Simplify the determinant and then expand.
Complete step-by-step answer:
Det. \[\left| {\begin{array}{*{20}{c}}
a&a&x \\
m&m&m \\
b&x&b
\end{array}} \right| = 0\]
Here , we have one complete row of m.
∴ taking m common, we get
\[m\left| {\begin{array}{*{20}{c}}
a&a&x \\
1&1&1 \\
b&x&b
\end{array}} \right| = 0\]
Now\[{c_2} \to {c_2} - {c_1}\] and \[{c_3} \to {c_3} - {c_1}\]
\[m\left| {\begin{array}{*{20}{c}}
a&0&{x - a} \\
1&0&0 \\
b&{x - b}&0
\end{array}} \right| = 0\]
Now expand along row 2, we get
\[m\left[ { - 1\left| {\begin{array}{*{20}{c}}
0&{x - a} \\
{x - b}&0
\end{array}} \right| + 0 + 0} \right] = 0\]
\[m\left[ { - \left( { - \left( {x - a} \right)\left( {x - b} \right)} \right)} \right] = 0\]
\[m\left( {x - a} \right)\left( {x - b} \right) = 0\]
This means m=0, (x-a) = 0 and (x-b) = 0
∴ x can have two values x = a and x = b.
∴ we have two correct options ‘A’ and ‘B’.
Note: For simplifying the determinant, we have to make as many elements of the determinant zero as possible. While applying the operations we can multiply some scalar quantities with the rows and columns to make the elements zero. Then expand through the row or the columns whose maximum no. of elements are zero for easy calculations.
Complete step-by-step answer:
Det. \[\left| {\begin{array}{*{20}{c}}
a&a&x \\
m&m&m \\
b&x&b
\end{array}} \right| = 0\]
Here , we have one complete row of m.
∴ taking m common, we get
\[m\left| {\begin{array}{*{20}{c}}
a&a&x \\
1&1&1 \\
b&x&b
\end{array}} \right| = 0\]
Now\[{c_2} \to {c_2} - {c_1}\] and \[{c_3} \to {c_3} - {c_1}\]
\[m\left| {\begin{array}{*{20}{c}}
a&0&{x - a} \\
1&0&0 \\
b&{x - b}&0
\end{array}} \right| = 0\]
Now expand along row 2, we get
\[m\left[ { - 1\left| {\begin{array}{*{20}{c}}
0&{x - a} \\
{x - b}&0
\end{array}} \right| + 0 + 0} \right] = 0\]
\[m\left[ { - \left( { - \left( {x - a} \right)\left( {x - b} \right)} \right)} \right] = 0\]
\[m\left( {x - a} \right)\left( {x - b} \right) = 0\]
This means m=0, (x-a) = 0 and (x-b) = 0
∴ x can have two values x = a and x = b.
∴ we have two correct options ‘A’ and ‘B’.
Note: For simplifying the determinant, we have to make as many elements of the determinant zero as possible. While applying the operations we can multiply some scalar quantities with the rows and columns to make the elements zero. Then expand through the row or the columns whose maximum no. of elements are zero for easy calculations.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

