Find the value of $x$ from the equation:
$\sqrt 3 x - 2 = 2\sqrt 3 + 4$.
(A) $x = 2\left( {1 + \sqrt 3 } \right)$
(B) $x = \left( {1 + 2\sqrt 3 } \right)$
(C) $x = 3\left( {2 + \sqrt 2 } \right)$
(D) $x = - 2\left( {3 + \sqrt 3 } \right)$
Answer
381.9k+ views
Hint: Separate the terms containing $x$ on one side and constant on the other. Evaluate the value of $x$ and rationalize the final value if required.
Complete step-by-step answer:
According to the question, the given equation is:
$ \Rightarrow \sqrt 3 x - 2 = 2\sqrt 3 + 4$
Separating the terms containing variable on one side and constants on the other and then solving it further, we’ll get:
$
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 4 + 2, \\
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 6, \\
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 2 \times 3 \\
$
We know that 3 can also be written as $\sqrt 3 \times \sqrt 3 $, using this we’ll get:
$
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 2 \times \sqrt 3 \times \sqrt 3 , \\
\Rightarrow \sqrt 3 x = \sqrt 3 \left( {2 + 2\sqrt 3 } \right), \\
\Rightarrow x = 2 + 2\sqrt 3 , \\
\Rightarrow x = 2\left( {1 + \sqrt 3 } \right) \\
$
So, the value of $x$ in the above equation is $2\left( {1 + \sqrt 3 } \right)$. (A) is the correct option.
Note: If in any expression, we are getting an irrational number in denominator then we can always rationalize the number to get a rational number in denominator. In rationalization, we multiply both numerator and denominator by the conjugate of denominator.
Complete step-by-step answer:
According to the question, the given equation is:
$ \Rightarrow \sqrt 3 x - 2 = 2\sqrt 3 + 4$
Separating the terms containing variable on one side and constants on the other and then solving it further, we’ll get:
$
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 4 + 2, \\
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 6, \\
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 2 \times 3 \\
$
We know that 3 can also be written as $\sqrt 3 \times \sqrt 3 $, using this we’ll get:
$
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 2 \times \sqrt 3 \times \sqrt 3 , \\
\Rightarrow \sqrt 3 x = \sqrt 3 \left( {2 + 2\sqrt 3 } \right), \\
\Rightarrow x = 2 + 2\sqrt 3 , \\
\Rightarrow x = 2\left( {1 + \sqrt 3 } \right) \\
$
So, the value of $x$ in the above equation is $2\left( {1 + \sqrt 3 } \right)$. (A) is the correct option.
Note: If in any expression, we are getting an irrational number in denominator then we can always rationalize the number to get a rational number in denominator. In rationalization, we multiply both numerator and denominator by the conjugate of denominator.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which one of the following places is unlikely to be class 8 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Elucidate the structure of fructose class 12 chemistry CBSE

What is pollution? How many types of pollution? Define it
