Answer
Verified
467.4k+ views
Hint: Separate the terms containing $x$ on one side and constant on the other. Evaluate the value of $x$ and rationalize the final value if required.
Complete step-by-step answer:
According to the question, the given equation is:
$ \Rightarrow \sqrt 3 x - 2 = 2\sqrt 3 + 4$
Separating the terms containing variable on one side and constants on the other and then solving it further, we’ll get:
$
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 4 + 2, \\
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 6, \\
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 2 \times 3 \\
$
We know that 3 can also be written as $\sqrt 3 \times \sqrt 3 $, using this we’ll get:
$
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 2 \times \sqrt 3 \times \sqrt 3 , \\
\Rightarrow \sqrt 3 x = \sqrt 3 \left( {2 + 2\sqrt 3 } \right), \\
\Rightarrow x = 2 + 2\sqrt 3 , \\
\Rightarrow x = 2\left( {1 + \sqrt 3 } \right) \\
$
So, the value of $x$ in the above equation is $2\left( {1 + \sqrt 3 } \right)$. (A) is the correct option.
Note: If in any expression, we are getting an irrational number in denominator then we can always rationalize the number to get a rational number in denominator. In rationalization, we multiply both numerator and denominator by the conjugate of denominator.
Complete step-by-step answer:
According to the question, the given equation is:
$ \Rightarrow \sqrt 3 x - 2 = 2\sqrt 3 + 4$
Separating the terms containing variable on one side and constants on the other and then solving it further, we’ll get:
$
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 4 + 2, \\
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 6, \\
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 2 \times 3 \\
$
We know that 3 can also be written as $\sqrt 3 \times \sqrt 3 $, using this we’ll get:
$
\Rightarrow \sqrt 3 x = 2\sqrt 3 + 2 \times \sqrt 3 \times \sqrt 3 , \\
\Rightarrow \sqrt 3 x = \sqrt 3 \left( {2 + 2\sqrt 3 } \right), \\
\Rightarrow x = 2 + 2\sqrt 3 , \\
\Rightarrow x = 2\left( {1 + \sqrt 3 } \right) \\
$
So, the value of $x$ in the above equation is $2\left( {1 + \sqrt 3 } \right)$. (A) is the correct option.
Note: If in any expression, we are getting an irrational number in denominator then we can always rationalize the number to get a rational number in denominator. In rationalization, we multiply both numerator and denominator by the conjugate of denominator.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE