
Find the value of $x$ for which $\sin (\pi x) + \cos \left( {\pi x} \right) = 0$.
Answer
514.2k+ views
Hint: In this question we have to find the value of $x$ so the key concept is to simplify the given equation $\sin (\pi x) + \cos \left( {\pi x} \right) = 0$ by using some basic trigonometric formulas.
“Complete step-by-step answer:”
We have been given that $\sin (\pi x) + \cos \left( {\pi x} \right) = 0$ ………... (1)
Now let’s simplify the equation (1)
$
\Rightarrow \sin (\pi x) + \cos (\pi x) = 0 \\
\Rightarrow \sin (\pi x) = - \cos (\pi x) \\
\Rightarrow \dfrac{{\sin (\pi x)}}{{\cos (\pi x)}} = - 1 \\
\\
$ ………….. (2)
And we know that $\dfrac{{\sin x}}{{\cos x}} = \tan x$
So the equation (2) can be written as
$
\Rightarrow \dfrac{{\sin (\pi x)}}{{\cos \left( {\pi x} \right)}} = - 1 \\
\Rightarrow \tan \left( {\pi x} \right) = - 1 \\
\\
$ …………. (3)
Since domain $\tan \theta $ is $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$
Therefore at $\theta = - \dfrac{\pi }{4}$
$ \Rightarrow \tan ( - \dfrac{\pi }{4}) = - \tan \dfrac{\pi }{4} = - 1$ ………….. (4)
Now in equation (3) replace $ - 1$ by $\tan \left( { - \dfrac{\pi }{4}} \right)$ we get,
$
\Rightarrow \tan (\pi x) = \tan ( - \dfrac{\pi }{4}) \\
\Rightarrow \pi x = - \dfrac{\pi }{4} \\
\Rightarrow x = - \dfrac{1}{4} \\
$
Now to recheck the solution putting the value of $x = - \dfrac{1}{4}$ in L.H.S of equation (1) we get,
$
\Rightarrow \sin ( - \dfrac{\pi }{4}) + \cos ( - \dfrac{\pi }{4}) \\
\Rightarrow - \sin \dfrac{\pi }{4} + \cos \dfrac{\pi }{4} \\
\Rightarrow - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} = 0 = {\text{R}}{\text{.H}}{\text{.S}} \\
$
Hence at $x = - \dfrac{1}{4}$ equation (1) is satisfied.
And hence the value of $x = - \dfrac{1}{4}$ for which $\sin (\pi x) + \cos (\pi x) = 0$.
Note: Whenever we face such types of problems the key point is that first we find the domain of the given equation and then find the value corresponding to that domain only and equating to it. After getting the value, we should recheck the given solution by putting in the given equation whether the solution satisfies the given equation or not. If the solution satisfies the given equation it means that the founded solution was our right answer.
“Complete step-by-step answer:”
We have been given that $\sin (\pi x) + \cos \left( {\pi x} \right) = 0$ ………... (1)
Now let’s simplify the equation (1)
$
\Rightarrow \sin (\pi x) + \cos (\pi x) = 0 \\
\Rightarrow \sin (\pi x) = - \cos (\pi x) \\
\Rightarrow \dfrac{{\sin (\pi x)}}{{\cos (\pi x)}} = - 1 \\
\\
$ ………….. (2)
And we know that $\dfrac{{\sin x}}{{\cos x}} = \tan x$
So the equation (2) can be written as
$
\Rightarrow \dfrac{{\sin (\pi x)}}{{\cos \left( {\pi x} \right)}} = - 1 \\
\Rightarrow \tan \left( {\pi x} \right) = - 1 \\
\\
$ …………. (3)
Since domain $\tan \theta $ is $\left( { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right)$
Therefore at $\theta = - \dfrac{\pi }{4}$
$ \Rightarrow \tan ( - \dfrac{\pi }{4}) = - \tan \dfrac{\pi }{4} = - 1$ ………….. (4)
Now in equation (3) replace $ - 1$ by $\tan \left( { - \dfrac{\pi }{4}} \right)$ we get,
$
\Rightarrow \tan (\pi x) = \tan ( - \dfrac{\pi }{4}) \\
\Rightarrow \pi x = - \dfrac{\pi }{4} \\
\Rightarrow x = - \dfrac{1}{4} \\
$
Now to recheck the solution putting the value of $x = - \dfrac{1}{4}$ in L.H.S of equation (1) we get,
$
\Rightarrow \sin ( - \dfrac{\pi }{4}) + \cos ( - \dfrac{\pi }{4}) \\
\Rightarrow - \sin \dfrac{\pi }{4} + \cos \dfrac{\pi }{4} \\
\Rightarrow - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} = 0 = {\text{R}}{\text{.H}}{\text{.S}} \\
$
Hence at $x = - \dfrac{1}{4}$ equation (1) is satisfied.
And hence the value of $x = - \dfrac{1}{4}$ for which $\sin (\pi x) + \cos (\pi x) = 0$.
Note: Whenever we face such types of problems the key point is that first we find the domain of the given equation and then find the value corresponding to that domain only and equating to it. After getting the value, we should recheck the given solution by putting in the given equation whether the solution satisfies the given equation or not. If the solution satisfies the given equation it means that the founded solution was our right answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

The final image formed by a compound microscope is class 12 physics CBSE
