
Find the value of \[x\] for which \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)\] is satisfied.
(a) \[\dfrac{1}{2}\]
(b) 1
(c) 0
(d) \[-\dfrac{1}{2}\]
Answer
512.1k+ views
Hint: In this question, we are given with the equation \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)\].
Now we will use the identity of the trigonometric function say \[\sin \left( \theta \right)=\cos \left( \dfrac{\pi }{2}-\theta \right)\]. Also we will use the property that if \[\cos x=\cos y\], then we have that \[x=2n\pi \pm y\] for integers values \[n\]. Using these properties of trigonometric functions, we will get our desired answer.
Complete step by step answer:
We are given with the equation \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right).............(1)\].
Now since we know that for any \[\theta \in \left[ 0,2\pi \right]\], \[\sin \left( \theta \right)=\cos \left( \dfrac{\pi }{2}-\theta \right)\].
Therefore we can have
\[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( \dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right) \right).............(2)\]
Now on substituting the value of equation (2) in equation (1), we will have
\[\cos \left( \dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right).............(3)\]
Since we also know the property of the trigonometric function that if \[\cos a=\cos b\], then we have that \[a=2n\pi \pm b\] for all integers values \[n\].
Now on comparing equation (3) with \[\cos a=\cos b\], we have that
\[a=\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)\] and
\[b={{\tan }^{-1}}x\]
Therefore using the property that if \[\cos a=\cos b\], then we have that \[a=2n\pi \pm b\] for all integers values \[n\], we will have
\[\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)=2n\pi \pm {{\tan }^{-1}}x\] for all integers values \[n\].
Now since the above equation is true all the integer values of \[n\], hence it is also true for \[n=0\].
Now on substituting the value \[n=0\] in the above equation \[\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)=2n\pi \pm {{\tan }^{-1}}x\], we will have
\[\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)=0\pm {{\tan }^{-1}}x\]
This implies that
\[\dfrac{\pi }{2}={{\cot }^{-1}}\left( 1+x \right)\pm {{\tan }^{-1}}x............(4)\]
Now since we know that \[{{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x\] for all values of \[x\].
Hence we can have \[{{\cot }^{-1}}\left( 1+x \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( 1+x \right)\]
Therefore on substituting the value \[{{\cot }^{-1}}\left( 1+x \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( 1+x \right)\] in the above equation (4), we get
\[\dfrac{\pi }{2}=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( 1+x \right)\pm {{\tan }^{-1}}x\]
Therefore we have
\[{{\tan }^{-1}}\left( 1+x \right)=\pm {{\tan }^{-1}}x\]
Now since we know that if \[\pm {{\tan }^{-1}}x={{\tan }^{-1}}\left( \pm x \right)\]
Therefore we get
\[{{\tan }^{-1}}\left( 1+x \right)={{\tan }^{-1}}\left( \pm x \right)\]
Also if \[{{\tan }^{-1}}x={{\tan }^{-1}}y\], then \[x=y\].
Therefore form \[{{\tan }^{-1}}\left( 1+x \right)={{\tan }^{-1}}\left( \pm x \right)\], we get that
\[1+x=\pm x\]
Now since we cannot have \[1+x=x\] for any value of \[x\], hence we must have
\[1+x=-x\]
This implies that
\[\begin{align}
& -2x=1 \\
& \Rightarrow x=-\dfrac{1}{2}
\end{align}\]
Therefore we have that for \[x=-\dfrac{1}{2}\] we have that the given equation \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)\] is satisfied.
So, the correct answer is “Option D”.
Note: In this problem, in order to determine the value of \[x\] for which the given equation \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)\] is satisfied we can substitute the value \[{{\cot }^{-1}}\left( 1+x \right)=a\] and \[{{\tan }^{-1}}x=b\] to get that \[1+x=\cot a\] and \[x=\tan b\]. Then we have found the values of \[a\] and \[b\] using the properties of \[\cot \] and \[\tan \] function. Then on substituting the values in \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)\] we have form a quadratic equation in \[x\]. On solving the same we can get the desired answer.
Now we will use the identity of the trigonometric function say \[\sin \left( \theta \right)=\cos \left( \dfrac{\pi }{2}-\theta \right)\]. Also we will use the property that if \[\cos x=\cos y\], then we have that \[x=2n\pi \pm y\] for integers values \[n\]. Using these properties of trigonometric functions, we will get our desired answer.
Complete step by step answer:
We are given with the equation \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right).............(1)\].
Now since we know that for any \[\theta \in \left[ 0,2\pi \right]\], \[\sin \left( \theta \right)=\cos \left( \dfrac{\pi }{2}-\theta \right)\].
Therefore we can have
\[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( \dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right) \right).............(2)\]
Now on substituting the value of equation (2) in equation (1), we will have
\[\cos \left( \dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right).............(3)\]
Since we also know the property of the trigonometric function that if \[\cos a=\cos b\], then we have that \[a=2n\pi \pm b\] for all integers values \[n\].
Now on comparing equation (3) with \[\cos a=\cos b\], we have that
\[a=\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)\] and
\[b={{\tan }^{-1}}x\]
Therefore using the property that if \[\cos a=\cos b\], then we have that \[a=2n\pi \pm b\] for all integers values \[n\], we will have
\[\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)=2n\pi \pm {{\tan }^{-1}}x\] for all integers values \[n\].
Now since the above equation is true all the integer values of \[n\], hence it is also true for \[n=0\].
Now on substituting the value \[n=0\] in the above equation \[\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)=2n\pi \pm {{\tan }^{-1}}x\], we will have
\[\dfrac{\pi }{2}-{{\cot }^{-1}}\left( 1+x \right)=0\pm {{\tan }^{-1}}x\]
This implies that
\[\dfrac{\pi }{2}={{\cot }^{-1}}\left( 1+x \right)\pm {{\tan }^{-1}}x............(4)\]
Now since we know that \[{{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x\] for all values of \[x\].
Hence we can have \[{{\cot }^{-1}}\left( 1+x \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( 1+x \right)\]
Therefore on substituting the value \[{{\cot }^{-1}}\left( 1+x \right)=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( 1+x \right)\] in the above equation (4), we get
\[\dfrac{\pi }{2}=\dfrac{\pi }{2}-{{\tan }^{-1}}\left( 1+x \right)\pm {{\tan }^{-1}}x\]
Therefore we have
\[{{\tan }^{-1}}\left( 1+x \right)=\pm {{\tan }^{-1}}x\]
Now since we know that if \[\pm {{\tan }^{-1}}x={{\tan }^{-1}}\left( \pm x \right)\]
Therefore we get
\[{{\tan }^{-1}}\left( 1+x \right)={{\tan }^{-1}}\left( \pm x \right)\]
Also if \[{{\tan }^{-1}}x={{\tan }^{-1}}y\], then \[x=y\].
Therefore form \[{{\tan }^{-1}}\left( 1+x \right)={{\tan }^{-1}}\left( \pm x \right)\], we get that
\[1+x=\pm x\]
Now since we cannot have \[1+x=x\] for any value of \[x\], hence we must have
\[1+x=-x\]
This implies that
\[\begin{align}
& -2x=1 \\
& \Rightarrow x=-\dfrac{1}{2}
\end{align}\]
Therefore we have that for \[x=-\dfrac{1}{2}\] we have that the given equation \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)\] is satisfied.
So, the correct answer is “Option D”.
Note: In this problem, in order to determine the value of \[x\] for which the given equation \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)\] is satisfied we can substitute the value \[{{\cot }^{-1}}\left( 1+x \right)=a\] and \[{{\tan }^{-1}}x=b\] to get that \[1+x=\cot a\] and \[x=\tan b\]. Then we have found the values of \[a\] and \[b\] using the properties of \[\cot \] and \[\tan \] function. Then on substituting the values in \[\sin \left( {{\cot }^{-1}}\left( 1+x \right) \right)=\cos \left( {{\tan }^{-1}}x \right)\] we have form a quadratic equation in \[x\]. On solving the same we can get the desired answer.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
