Answer
Verified
440.1k+ views
Hint: Using the definition of A.P. consider the difference between successive terms.Solve the equation $(5x + 2) - (4x - 1) = (4x - 1) - (x + 2)$ to obtain the value of $x$.
Complete step by step solution:
We are given three terms $(5x + 2)$,$(4x - 1)$, and $(x + 2)$
These terms are in A. P., i.e., they are in Arithmetic Progression.
We are asked to find the value of the variable $x$.
We say that a given sequence of n numbers or terms ${x_1},{x_2},...{x_n}$ are in arithmetic progression when the difference between any two successive terms, called the common difference, is a constant.
Let d be the common difference.
Then, we have \[d = {x_2} - {x_1} = {x_3} - {x_2} = ... = {x_n} - {x_{n - 1}}\]
Using this definition, we can conclude that the difference between the successive terms of the sequence $(5x + 2)$,$(4x - 1)$, and$(x + 2)$is a constant.
Therefore, we get
$
(5x + 2) - (4x - 1) = (4x - 1) - (x + 2) \\
\Rightarrow 5x + 2 - 4x + 1 = 4x - 1 - x - 2 \\
\Rightarrow x + 3 = 3x - 3 \\
\Rightarrow 2x = 6 \\
\Rightarrow x = 3 \\
$
Hence the value of $x$ is 3.
Note: The difference must be considered for successive terms. That is the order of the terms matter while solving problems related to A.P.
Complete step by step solution:
We are given three terms $(5x + 2)$,$(4x - 1)$, and $(x + 2)$
These terms are in A. P., i.e., they are in Arithmetic Progression.
We are asked to find the value of the variable $x$.
We say that a given sequence of n numbers or terms ${x_1},{x_2},...{x_n}$ are in arithmetic progression when the difference between any two successive terms, called the common difference, is a constant.
Let d be the common difference.
Then, we have \[d = {x_2} - {x_1} = {x_3} - {x_2} = ... = {x_n} - {x_{n - 1}}\]
Using this definition, we can conclude that the difference between the successive terms of the sequence $(5x + 2)$,$(4x - 1)$, and$(x + 2)$is a constant.
Therefore, we get
$
(5x + 2) - (4x - 1) = (4x - 1) - (x + 2) \\
\Rightarrow 5x + 2 - 4x + 1 = 4x - 1 - x - 2 \\
\Rightarrow x + 3 = 3x - 3 \\
\Rightarrow 2x = 6 \\
\Rightarrow x = 3 \\
$
Hence the value of $x$ is 3.
Note: The difference must be considered for successive terms. That is the order of the terms matter while solving problems related to A.P.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Who was the founder of muslim league A Mohmmad ali class 10 social science CBSE
Select the word that is correctly spelled a Twelveth class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers