
Find the value of x \[\dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \tan xA\].
Answer
568.8k+ views
Hint: Here, we will simplify the left-hand side using various properties of trigonometric functions. We will convert the left-hand side into a function of tangent. Then we will compare the Left-hand side and the Right-hand side and find the value of \[x\].
Formulas used: We will use following formulas:
1.\[3\sin A = 3\sin A - 4{\sin ^3}A\]
2.\[\cos 3A = 4{\cos ^3}A - 3\cos A\]
3.\[\sin 2A = 2\sin A\cos A\]
4.\[\cos 2A = 2{\cos ^2}A - 1\]
5.\[{\sin ^2}A + {\cos ^2}A = 1\]
Complete step-by-step answer:
We will start by simplifying the numerator. We know that \[\sin 3A\] is the same as .., we will substitute the value in the numerator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin A + \left( {3\sin A - 4{{\sin }^3}A} \right)}}{{\cos A + \cos 3A}}\]
We know that \[\cos 3A\] is the same as \[4{\cos ^3}A - 3\cos A\]. We will substitute the value in the denominator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin A + 3\sin A - 4{{\sin }^3}A}}{{\cos A + 4{{\cos }^3}A - 3\cos A}}\]
We will add the like terms:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{4\sin A - 4{{\sin }^3}A}}{{4{{\cos }^3}A - 2\cos A}}\]
We will take out the common factors of terms in the numerator and the denominator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{4\sin A\left( {1 - {{\sin }^2}A} \right)}}{{2\cos A\left( {2{{\cos }^2}A - 1} \right)}}\]
We know that:
\[\begin{array}{l} \Rightarrow {\cos ^2}x + {\sin ^2}A = 1\\ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}A\end{array}\]
We will substitute \[{\cos ^2}A\] for \[1 - {\sin ^2}A\] in the numerator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{4\sin A{{\cos }^2}A}}{{2\cos A\left( {2{{\cos }^2}A - 1} \right)}}\]
We will cancel the common terms in the numerator and the denominator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{2\sin A\cos A}}{{\left( {2{{\cos }^2}A - 1} \right)}}\]
We know that \[2\sin A\cos A\] is the same as \[\sin 2A\], we will substitute the value in the numerator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin 2A}}{{\left( {2{{\cos }^2}A - 1} \right)}}\]
We know that \[2{\cos ^2}A - 1\] is the same as \[\cos 2A\]. We will substitute the value in the denominator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin 2A}}{{\cos 2A}}\]
We will simplify the above expression using the formula for the tangent of an angle; that is, the ratio of the Sine of an angle to the Cosine of an angle is equal to the Tangent of that angle:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \tan 2A\]
We will compare the Left-hand side with the Right-hand side:
\[\begin{array}{l}\tan 2A = \tan xA\\ \Rightarrow 2 = x\end{array}\]
$\therefore $ The value of \[x\] is 2.
Note: We know that that the Sine and Cosine of the sum of 2 angles is:
\[\begin{array}{l}\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\\\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\end{array}\]
We can derive the formulas of \[\sin 2A,\sin 3A,\cos 2A\] and \[\cos 3A\] that we have used in the solution using the above formulas.
Formulas used: We will use following formulas:
1.\[3\sin A = 3\sin A - 4{\sin ^3}A\]
2.\[\cos 3A = 4{\cos ^3}A - 3\cos A\]
3.\[\sin 2A = 2\sin A\cos A\]
4.\[\cos 2A = 2{\cos ^2}A - 1\]
5.\[{\sin ^2}A + {\cos ^2}A = 1\]
Complete step-by-step answer:
We will start by simplifying the numerator. We know that \[\sin 3A\] is the same as .., we will substitute the value in the numerator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin A + \left( {3\sin A - 4{{\sin }^3}A} \right)}}{{\cos A + \cos 3A}}\]
We know that \[\cos 3A\] is the same as \[4{\cos ^3}A - 3\cos A\]. We will substitute the value in the denominator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin A + 3\sin A - 4{{\sin }^3}A}}{{\cos A + 4{{\cos }^3}A - 3\cos A}}\]
We will add the like terms:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{4\sin A - 4{{\sin }^3}A}}{{4{{\cos }^3}A - 2\cos A}}\]
We will take out the common factors of terms in the numerator and the denominator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{4\sin A\left( {1 - {{\sin }^2}A} \right)}}{{2\cos A\left( {2{{\cos }^2}A - 1} \right)}}\]
We know that:
\[\begin{array}{l} \Rightarrow {\cos ^2}x + {\sin ^2}A = 1\\ \Rightarrow {\cos ^2}x = 1 - {\sin ^2}A\end{array}\]
We will substitute \[{\cos ^2}A\] for \[1 - {\sin ^2}A\] in the numerator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{4\sin A{{\cos }^2}A}}{{2\cos A\left( {2{{\cos }^2}A - 1} \right)}}\]
We will cancel the common terms in the numerator and the denominator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{2\sin A\cos A}}{{\left( {2{{\cos }^2}A - 1} \right)}}\]
We know that \[2\sin A\cos A\] is the same as \[\sin 2A\], we will substitute the value in the numerator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin 2A}}{{\left( {2{{\cos }^2}A - 1} \right)}}\]
We know that \[2{\cos ^2}A - 1\] is the same as \[\cos 2A\]. We will substitute the value in the denominator:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \dfrac{{\sin 2A}}{{\cos 2A}}\]
We will simplify the above expression using the formula for the tangent of an angle; that is, the ratio of the Sine of an angle to the Cosine of an angle is equal to the Tangent of that angle:
\[ \Rightarrow \dfrac{{\sin A + \sin 3A}}{{\cos A + \cos 3A}} = \tan 2A\]
We will compare the Left-hand side with the Right-hand side:
\[\begin{array}{l}\tan 2A = \tan xA\\ \Rightarrow 2 = x\end{array}\]
$\therefore $ The value of \[x\] is 2.
Note: We know that that the Sine and Cosine of the sum of 2 angles is:
\[\begin{array}{l}\sin \left( {x + y} \right) = \sin x\cos y + \cos x\sin y\\\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y\end{array}\]
We can derive the formulas of \[\sin 2A,\sin 3A,\cos 2A\] and \[\cos 3A\] that we have used in the solution using the above formulas.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

