
Find the value of \[x + y\]from the following equation:
\[2\left[ {\begin{array}{*{20}{c}}
1&3 \\
0&x
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
y&0 \\
1&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right]\].
Answer
509.1k+ views
Hint: To solve the question we have an idea of operations of matrices. At first we have to multiply by the matrix \[\left[ {\begin{array}{*{20}{c}}
1&3 \\
0&x
\end{array}} \right]\]by 2 and evaluate it and obtained \[2 \times 2\]matrix then added to the matrix\[\left[ {\begin{array}{*{20}{c}}
y&0 \\
1&2
\end{array}} \right]\]. Finally we have to equate the obtained matrix with\[\left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right]\]and find out the values of x and y which are then added to evaluate\[x + y\].
Complete step by step answer:
The matrix equation is given by
\[2\left[ {\begin{array}{*{20}{c}}
1&3 \\
0&x
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
y&0 \\
1&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right]\] …………………………….. (1)
We know that while a multiplying a matrix with a scalar, we must multiply each entry with the scalar for example when a matrix \[\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\]is multiplied with a scalar ‘k’ then
\[k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ka}&{kb} \\
{kc}&{kd}
\end{array}} \right]\] ……………………………… (2)
Therefore applying this formula, we can have,
\[2\left[ {\begin{array}{*{20}{c}}
1&3 \\
0&x
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 \times 1}&{2 \times 3} \\
{2 \times 0}&{2 \times x}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&6 \\
0&{2x}
\end{array}} \right]\] ……………………………… (3)
Now substituting the value from eq. (3) in eq. (1), we will get
\[\left[ {\begin{array}{*{20}{c}}
2&6 \\
0&{2x}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
y&0 \\
1&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right]\] ……………………………… (4)
We know that the addition is accomplished by adding corresponding elements. For example consider two matrices \[X = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\]and\[Y = \left[ {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right]\], then
\[X + Y = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{a + e}&{b + f} \\
{c + g}&{d + h}
\end{array}} \right]\] ………………………. (5)
Applying this rule to LHS of eq. (4), we will get
\[\begin{gathered}
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 + y}&{6 + 0} \\
{0 + 1}&{2x + 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 + y}&6 \\
1&{2x + 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right] \\
\end{gathered} \]
………………………………. (6)
Now equating the corresponding elements of the matrices on both the sides of eq. (6), we will get,
\[\begin{gathered}
\Rightarrow 2 + y = 5 \\
\Rightarrow y = 3 \\
\end{gathered} \]
………………………………. (7)
\[\begin{gathered}
\Rightarrow 2x + 2 = 8 \\
\Rightarrow 2x = 6 \\
\Rightarrow x = \dfrac{6}{2} = 3 \\
\end{gathered} \]
………………………………. (8)
Now adding the values of x and y from the equations (7) and (8), we will get,
\[x + y = 3 + 3 = 6\] ……………………………….. (9)
This is the required answer.
So, the correct answer is 6.
Note: Two matrices can be added if they have the same dimension that means same number of rows and columns. In addition to two matrices, the element of ith row and jth column in one matrix is added to the element of ith row and jth column in second matrix.
1&3 \\
0&x
\end{array}} \right]\]by 2 and evaluate it and obtained \[2 \times 2\]matrix then added to the matrix\[\left[ {\begin{array}{*{20}{c}}
y&0 \\
1&2
\end{array}} \right]\]. Finally we have to equate the obtained matrix with\[\left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right]\]and find out the values of x and y which are then added to evaluate\[x + y\].
Complete step by step answer:
The matrix equation is given by
\[2\left[ {\begin{array}{*{20}{c}}
1&3 \\
0&x
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
y&0 \\
1&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right]\] …………………………….. (1)
We know that while a multiplying a matrix with a scalar, we must multiply each entry with the scalar for example when a matrix \[\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\]is multiplied with a scalar ‘k’ then
\[k\left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ka}&{kb} \\
{kc}&{kd}
\end{array}} \right]\] ……………………………… (2)
Therefore applying this formula, we can have,
\[2\left[ {\begin{array}{*{20}{c}}
1&3 \\
0&x
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 \times 1}&{2 \times 3} \\
{2 \times 0}&{2 \times x}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&6 \\
0&{2x}
\end{array}} \right]\] ……………………………… (3)
Now substituting the value from eq. (3) in eq. (1), we will get
\[\left[ {\begin{array}{*{20}{c}}
2&6 \\
0&{2x}
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
y&0 \\
1&2
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right]\] ……………………………… (4)
We know that the addition is accomplished by adding corresponding elements. For example consider two matrices \[X = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right]\]and\[Y = \left[ {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right]\], then
\[X + Y = \left[ {\begin{array}{*{20}{c}}
a&b \\
c&d
\end{array}} \right] + \left[ {\begin{array}{*{20}{c}}
e&f \\
g&h
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{a + e}&{b + f} \\
{c + g}&{d + h}
\end{array}} \right]\] ………………………. (5)
Applying this rule to LHS of eq. (4), we will get
\[\begin{gathered}
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 + y}&{6 + 0} \\
{0 + 1}&{2x + 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right] \\
\Rightarrow \left[ {\begin{array}{*{20}{c}}
{2 + y}&6 \\
1&{2x + 2}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
5&6 \\
1&8
\end{array}} \right] \\
\end{gathered} \]
………………………………. (6)
Now equating the corresponding elements of the matrices on both the sides of eq. (6), we will get,
\[\begin{gathered}
\Rightarrow 2 + y = 5 \\
\Rightarrow y = 3 \\
\end{gathered} \]
………………………………. (7)
\[\begin{gathered}
\Rightarrow 2x + 2 = 8 \\
\Rightarrow 2x = 6 \\
\Rightarrow x = \dfrac{6}{2} = 3 \\
\end{gathered} \]
………………………………. (8)
Now adding the values of x and y from the equations (7) and (8), we will get,
\[x + y = 3 + 3 = 6\] ……………………………….. (9)
This is the required answer.
So, the correct answer is 6.
Note: Two matrices can be added if they have the same dimension that means same number of rows and columns. In addition to two matrices, the element of ith row and jth column in one matrix is added to the element of ith row and jth column in second matrix.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
