
Find the value of \[\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{4}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]=?\]
Answer
580.8k+ views
Hint: The given problem is related to evaluation of limit of a function. Try to eliminate the trigonometric terms using formulae of limits for trigonometric functions, like $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ . Then, take the variable with highest power common in the numerator and the denominator. Then substitute the limits.
Complete step-by-step answer:
The given limit to be evaluated is \[\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{4}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]\] . We know, when x tends to $-\infty $ , $\dfrac{1}{x}$ tends to 0. We also know, we can write ${{x}^{4}}$ as $\dfrac{{{x}^{3}}}{\dfrac{1}{x}}$ ………… (i) and $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$……….. (ii) . Now, let the value of the limit be L. So, $L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{4}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]$ . Now, from (i), we can write $L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{{{x}^{3}}}{\dfrac{1}{x}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]$
$\Rightarrow L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}\dfrac{\sin \left( \dfrac{1}{x} \right)}{\dfrac{1}{x}}+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]$
Now, from (ii), we know $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ . So, we can write $L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]$ .
Now, as \[x\to -\infty\] , the value of x is negative. So, by the definition of modulus function, we can say \[\left| x \right|=-x\].
\[\Rightarrow {{\left| x \right|}^{3}}=-{{x}^{3}}\]
\[\Rightarrow 1+{{\left| x \right|}^{3}}=1-{{x}^{3}}\]
We will substitute the value of \[1+{{\left| x \right|}^{3}}\] in the denominator. So, we get the limit as $L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}+{{x}^{2}}}{\left( 1-{{x}^{3}} \right)} \right]$ . Now, the function consists of polynomials. So, we will take the variable with the highest power, i.e.${{x}^{3}}$ , common from the numerator as well as the denominator. So, we get:
$L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}\left( 1+\dfrac{1}{x} \right)}{{{x}^{3}}\left( \dfrac{1}{{{x}^{3}}}-1 \right)} \right]$
$\Rightarrow L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{\left( 1+\dfrac{1}{x} \right)}{\left( \dfrac{1}{{{x}^{3}}}-1 \right)} \right]$
Substituting $x=-\infty $ in the limit, we get :
$L=\dfrac{1+\dfrac{1}{-\infty }}{\dfrac{1}{-{{\infty }^{3}}}-1}$
$\Rightarrow L=\dfrac{1+0}{0-1}$
$\Rightarrow L=-1$
Hence, the value of the limit is equal to -1.
Note: While solving problems related to limits, try to find out the terms in the function, which can lead to attainment of indeterminate forms and then try to eliminate those terms. Also, while performing simplification or substitution, always take care of sign, Sign mistakes are very common and can lead to incorrect answers.
Complete step-by-step answer:
The given limit to be evaluated is \[\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{4}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]\] . We know, when x tends to $-\infty $ , $\dfrac{1}{x}$ tends to 0. We also know, we can write ${{x}^{4}}$ as $\dfrac{{{x}^{3}}}{\dfrac{1}{x}}$ ………… (i) and $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$……….. (ii) . Now, let the value of the limit be L. So, $L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{4}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]$ . Now, from (i), we can write $L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{\dfrac{{{x}^{3}}}{\dfrac{1}{x}}\sin \left( \dfrac{1}{x} \right)+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]$
$\Rightarrow L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}\dfrac{\sin \left( \dfrac{1}{x} \right)}{\dfrac{1}{x}}+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]$
Now, from (ii), we know $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$ . So, we can write $L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}+{{x}^{2}}}{\left( 1+{{\left| x \right|}^{3}} \right)} \right]$ .
Now, as \[x\to -\infty\] , the value of x is negative. So, by the definition of modulus function, we can say \[\left| x \right|=-x\].
\[\Rightarrow {{\left| x \right|}^{3}}=-{{x}^{3}}\]
\[\Rightarrow 1+{{\left| x \right|}^{3}}=1-{{x}^{3}}\]
We will substitute the value of \[1+{{\left| x \right|}^{3}}\] in the denominator. So, we get the limit as $L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}+{{x}^{2}}}{\left( 1-{{x}^{3}} \right)} \right]$ . Now, the function consists of polynomials. So, we will take the variable with the highest power, i.e.${{x}^{3}}$ , common from the numerator as well as the denominator. So, we get:
$L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{{{x}^{3}}\left( 1+\dfrac{1}{x} \right)}{{{x}^{3}}\left( \dfrac{1}{{{x}^{3}}}-1 \right)} \right]$
$\Rightarrow L=\underset{x\to -\infty }{\mathop{\lim }}\,\left[ \dfrac{\left( 1+\dfrac{1}{x} \right)}{\left( \dfrac{1}{{{x}^{3}}}-1 \right)} \right]$
Substituting $x=-\infty $ in the limit, we get :
$L=\dfrac{1+\dfrac{1}{-\infty }}{\dfrac{1}{-{{\infty }^{3}}}-1}$
$\Rightarrow L=\dfrac{1+0}{0-1}$
$\Rightarrow L=-1$
Hence, the value of the limit is equal to -1.
Note: While solving problems related to limits, try to find out the terms in the function, which can lead to attainment of indeterminate forms and then try to eliminate those terms. Also, while performing simplification or substitution, always take care of sign, Sign mistakes are very common and can lead to incorrect answers.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

