
Find the value of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\] .
(a) 2
(b) 1
(c) 6
(d) \[-2\]
Answer
585.3k+ views
Hint: In this question, we have to evaluate the limit \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\]. We will use the trigonometric identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\] in the expression \[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\] to simplify the problem. We use the property of rationalizing a function say \[\dfrac{x+a}{x+b}\] by multiplying and dividing the expression by \[x-b\]. Using this we will then rationalize the function
\[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\] by multiplying and dividing the expression \[\sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x-{{\sin }^{2}}x+1}\] to further simplify the problem. We will also use the identity \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]. Also we will be using the \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1\]. We will then solve to get the desired answer.
Complete step by step answer:
We are given with the limit \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\].
Consider the expression \[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\] whose limit is to be calculated when \[x\] tends to zero.
Since we know the trigonometric identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\], that implies
\[1-{{\sin }^{2}}x={{\cos }^{2}}x\].
Thus on substituting the value \[1-{{\sin }^{2}}x={{\cos }^{2}}x\] in the given expression \[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\], we will have
\[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}=\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}\]
Now since we know that in order to rationalize a function say \[\dfrac{x+a}{x+b}\] by multiplying and dividing the expression by \[x-b\].
we will then rationalize the function
\[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}\] by multiplying and dividing the expression \[\sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x}\] to further simplify the problem.
Using this we have
\[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}=\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( \sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}\]since we also know the identity \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
Using this in the denominator of the above expression, we will get
\[\begin{align}
& \dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( \sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}=\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{\left( \sqrt{{{x}^{2}}+2\sin x+1} \right)}^{2}}-{{\left( \sqrt{x+{{\cos }^{2}}x} \right)}^{2}}} \\
& =\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( {{x}^{2}}+2\sin x+1 \right)-\left( x+{{\cos }^{2}}x \right)}
\end{align}\]
On simplifying the denominator of the above equation by substituting \[1-{{\sin }^{2}}x={{\cos }^{2}}x\] , we will have
\[\begin{align}
& \dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x+1-\left( x+1-{{\sin }^{2}}x \right)}=\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x+1-x-1+{{\sin }^{2}}x} \\
& =\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x-x+{{\sin }^{2}}x}
\end{align}\]
Now on dividing the above expression by \[x\], we will have
\[\begin{align}
& \dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x-x+{{\sin }^{2}}x}=\dfrac{\dfrac{\left( x+2\sin x \right)}{x}\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( \dfrac{{{x}^{2}}+2\sin x-x+{{\sin }^{2}}x}{x} \right)} \\
& =\dfrac{\left( \dfrac{x}{x}+2\left( \dfrac{\sin x}{x} \right) \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( x+2\left( \dfrac{\sin x}{x} \right)-1+\sin x\left( \dfrac{\sin x}{x} \right) \right)} \\
& =\dfrac{\left( 1+2\dfrac{\sin x}{x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{x+2\left( \dfrac{\sin x}{x} \right)-1+\sin x\left( \dfrac{\sin x}{x} \right)}
\end{align}\]
Since we know that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1\].
Therefore by taking the \[\underset{x\to 0}{\mathop{\lim }}\,\] in the above expression we will get
\[\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\left( 1+2\dfrac{\sin x}{x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{x+2\left( \dfrac{\sin x}{x} \right)-1+\sin x\left( \dfrac{\sin x}{x} \right)} \right)=\dfrac{\left( 1+2\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right)\left( \underset{x\to 0}{\mathop{\lim }}\,\sqrt{{{x}^{2}}+2\sin x+1}+\underset{x\to 0}{\mathop{\lim }}\,\sqrt{x+{{\cos }^{2}}x} \right)}{\underset{x\to 0}{\mathop{\lim }}\,x+2\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}-\underset{x\to 0}{\mathop{\lim }}\,1+\underset{x\to 0}{\mathop{\lim }}\,\sin x\left( \dfrac{\sin x}{x} \right)} \\
& =\dfrac{\left( 1+2 \right)\left( 1+1 \right)}{0+2-1+0} \\
& =\dfrac{6}{1} \\
& =6
\end{align}\]Since \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}=\underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\left( 1+2\dfrac{\sin x}{x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{x+2\dfrac{\sin x}{x}-1+\sin x\left( \dfrac{\sin x}{x} \right)} \right)\]
Therefore we have
\[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}=6\]
So, the correct answer is “Option C”.
Note: In this problem, in order to determine the \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\] please take care while rationalizing the expression \[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}\] we have multiplying and dividing the expression \[\sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x}\] and not by \[\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}\].
\[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\] by multiplying and dividing the expression \[\sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x-{{\sin }^{2}}x+1}\] to further simplify the problem. We will also use the identity \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\]. Also we will be using the \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1\]. We will then solve to get the desired answer.
Complete step by step answer:
We are given with the limit \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\].
Consider the expression \[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\] whose limit is to be calculated when \[x\] tends to zero.
Since we know the trigonometric identity \[{{\sin }^{2}}x+{{\cos }^{2}}x=1\], that implies
\[1-{{\sin }^{2}}x={{\cos }^{2}}x\].
Thus on substituting the value \[1-{{\sin }^{2}}x={{\cos }^{2}}x\] in the given expression \[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\], we will have
\[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}=\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}\]
Now since we know that in order to rationalize a function say \[\dfrac{x+a}{x+b}\] by multiplying and dividing the expression by \[x-b\].
we will then rationalize the function
\[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}\] by multiplying and dividing the expression \[\sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x}\] to further simplify the problem.
Using this we have
\[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}=\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( \sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}\]since we also know the identity \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\].
Using this in the denominator of the above expression, we will get
\[\begin{align}
& \dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( \sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}=\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{\left( \sqrt{{{x}^{2}}+2\sin x+1} \right)}^{2}}-{{\left( \sqrt{x+{{\cos }^{2}}x} \right)}^{2}}} \\
& =\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( {{x}^{2}}+2\sin x+1 \right)-\left( x+{{\cos }^{2}}x \right)}
\end{align}\]
On simplifying the denominator of the above equation by substituting \[1-{{\sin }^{2}}x={{\cos }^{2}}x\] , we will have
\[\begin{align}
& \dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x+1-\left( x+1-{{\sin }^{2}}x \right)}=\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x+1-x-1+{{\sin }^{2}}x} \\
& =\dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x-x+{{\sin }^{2}}x}
\end{align}\]
Now on dividing the above expression by \[x\], we will have
\[\begin{align}
& \dfrac{\left( x+2\sin x \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{{{x}^{2}}+2\sin x-x+{{\sin }^{2}}x}=\dfrac{\dfrac{\left( x+2\sin x \right)}{x}\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( \dfrac{{{x}^{2}}+2\sin x-x+{{\sin }^{2}}x}{x} \right)} \\
& =\dfrac{\left( \dfrac{x}{x}+2\left( \dfrac{\sin x}{x} \right) \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{\left( x+2\left( \dfrac{\sin x}{x} \right)-1+\sin x\left( \dfrac{\sin x}{x} \right) \right)} \\
& =\dfrac{\left( 1+2\dfrac{\sin x}{x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{x+2\left( \dfrac{\sin x}{x} \right)-1+\sin x\left( \dfrac{\sin x}{x} \right)}
\end{align}\]
Since we know that \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1\].
Therefore by taking the \[\underset{x\to 0}{\mathop{\lim }}\,\] in the above expression we will get
\[\begin{align}
& \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\left( 1+2\dfrac{\sin x}{x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{x+2\left( \dfrac{\sin x}{x} \right)-1+\sin x\left( \dfrac{\sin x}{x} \right)} \right)=\dfrac{\left( 1+2\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x} \right)\left( \underset{x\to 0}{\mathop{\lim }}\,\sqrt{{{x}^{2}}+2\sin x+1}+\underset{x\to 0}{\mathop{\lim }}\,\sqrt{x+{{\cos }^{2}}x} \right)}{\underset{x\to 0}{\mathop{\lim }}\,x+2\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}-\underset{x\to 0}{\mathop{\lim }}\,1+\underset{x\to 0}{\mathop{\lim }}\,\sin x\left( \dfrac{\sin x}{x} \right)} \\
& =\dfrac{\left( 1+2 \right)\left( 1+1 \right)}{0+2-1+0} \\
& =\dfrac{6}{1} \\
& =6
\end{align}\]Since \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}=\underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\left( 1+2\dfrac{\sin x}{x} \right)\left( \sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x} \right)}{x+2\dfrac{\sin x}{x}-1+\sin x\left( \dfrac{\sin x}{x} \right)} \right)\]
Therefore we have
\[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}=6\]
So, the correct answer is “Option C”.
Note: In this problem, in order to determine the \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x-{{\sin }^{2}}x+1}}\] please take care while rationalizing the expression \[\dfrac{x+2\sin x}{\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}}\] we have multiplying and dividing the expression \[\sqrt{{{x}^{2}}+2\sin x+1}+\sqrt{x+{{\cos }^{2}}x}\] and not by \[\sqrt{{{x}^{2}}+2\sin x+1}-\sqrt{x+{{\cos }^{2}}x}\].
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

