
Find the value of $\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}$.
Answer
595.5k+ views
Hint: First, apply the limits directly to find out whether the value obtained is indeterminate form. Then apply L’Hospital Rule if the value of limit is indeterminate form. Remember the known formula $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$.
Complete step by step solution:
First we will directly apply the limits to the given expression.
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}={{(\sin 0)}^{\dfrac{1}{0}}}$
We know $\sin 0=0,\dfrac{1}{0}=\infty $ , so above equation becomes,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}={{0}^{\infty }}$
This is of indeterminate form.
So, we will solve the given expression before applying the limits.
Consider the given expression, it can be written as,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{\sin x}$
Multiplying and dividing by $\sqrt[x]{x}$, we get
$\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{\sin x}\times \dfrac{\sqrt[x]{x}}{\sqrt[x]{x}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sqrt[x]{\sin x}}{\sqrt[x]{x}}\times \sqrt[x]{x} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{\dfrac{\sin x}{x}}\times \sqrt[x]{x} \\
\end{align}$
Now we know the limit of the product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, therefore
$\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{\dfrac{\sin x}{x}}\times \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{x}$
Now we know, $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$, so the above equation becomes,
$\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=1\times \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{x}$
Now the limit says $x$ is approaching zero from right hand side, that is it includes all the positive numbers, so applying the limits to the above equation, we get
$\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=0$
So the limit of the given expression is zero.
Note: Students normally are worried about seeing such a question, despite solving it in minutes. If the limit had $x\to {{0}^{-}}$ , then we would get a different answer as there is no real root for negative numbers. We will get complex numbers for the roots of negative numbers.
Complete step by step solution:
First we will directly apply the limits to the given expression.
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}={{(\sin 0)}^{\dfrac{1}{0}}}$
We know $\sin 0=0,\dfrac{1}{0}=\infty $ , so above equation becomes,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}={{0}^{\infty }}$
This is of indeterminate form.
So, we will solve the given expression before applying the limits.
Consider the given expression, it can be written as,
$\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{\sin x}$
Multiplying and dividing by $\sqrt[x]{x}$, we get
$\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{\sin x}\times \dfrac{\sqrt[x]{x}}{\sqrt[x]{x}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\dfrac{\sqrt[x]{\sin x}}{\sqrt[x]{x}}\times \sqrt[x]{x} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{\dfrac{\sin x}{x}}\times \sqrt[x]{x} \\
\end{align}$
Now we know the limit of the product is the product of the limits. So, the limit of product of two functions is equal to the product of individual limits of the functions, therefore
$\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{\dfrac{\sin x}{x}}\times \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{x}$
Now we know, $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sin x}{x}=1$, so the above equation becomes,
$\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=1\times \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\sqrt[x]{x}$
Now the limit says $x$ is approaching zero from right hand side, that is it includes all the positive numbers, so applying the limits to the above equation, we get
$\Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{(\sin x)}^{\dfrac{1}{x}}}=0$
So the limit of the given expression is zero.
Note: Students normally are worried about seeing such a question, despite solving it in minutes. If the limit had $x\to {{0}^{-}}$ , then we would get a different answer as there is no real root for negative numbers. We will get complex numbers for the roots of negative numbers.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

