
Find the value of trigonometric ratios given as:
\[1)\sin {{30}^{\circ }}\cos {{30}^{\circ }}\]
\[2)\tan {{30}^{\circ }}\tan {{60}^{\circ }}\]
\[3){{\cos }^{2}}{{60}^{\circ }}+{{\sin }^{2}}30\]
Answer
607.5k+ views
Hint: To solve this type of problem we have to know the exact values of trigonometric functions. Write the value of trigonometric function and do mathematical operations like multiplication for the first to and addition for the last one.
Complete step-by-step solution -
\[1)\sin {{30}^{\circ }}\cos {{30}^{\circ }}\]
The value of \[\sin {{30}^{\circ }}=\dfrac{1}{2}\] . . . . . . . . . . . . . . . . . . . . (a)
The value of \[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\]. . . . . . . . . . . . . . . . . . . . (b)
Now substituting (a) and (b) in \[\sin {{30}^{\circ }}\cos {{30}^{\circ }}=\left( \dfrac{1}{2} \right)\times \left( \dfrac{\sqrt{3}}{2} \right)\]
\[\sin {{30}^{\circ }}\cos {{30}^{\circ }}\]\[=\dfrac{\sqrt{3}}{4}\]
\[2)\tan {{30}^{\circ }}\tan {{60}^{\circ }}\]
The value of \[\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
The value of \[\tan {{60}^{\circ }}=\sqrt{3}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Now substituting (1) and (2) in \[\tan {{30}^{\circ }}\tan {{60}^{\circ }}=\left( \dfrac{1}{\sqrt{3}} \right)\times \left( \sqrt{3} \right)\]
\[\tan {{30}^{\circ }}\tan {{60}^{\circ }}\]= \[=1\]
\[3){{\cos }^{2}}{{60}^{\circ }}+{{\sin }^{2}}30\]
The value of \[\cos {{60}^{\circ }}=\dfrac{1}{2}\]
The value of \[{{\cos }^{2}}{{60}^{\circ }}=\dfrac{1}{4}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . (p)
The value of \[\sin {{30}^{\circ }}=\dfrac{1}{2}\]
The value of \[{{\sin }^{2}}{{30}^{\circ }}=\dfrac{1}{4}\]. . . . . . . . . . . . . . . . . . . . . . (q)
Now substituting (p) and (q) in \[{{\cos }^{2}}{{60}^{\circ }}+{{\sin }^{2}}30\] we get
\[{{\cos }^{2}}{{60}^{\circ }}+{{\sin }^{2}}30=\dfrac{1}{4}+\dfrac{1}{4}\]
\[{{\cos }^{2}}{{60}^{\circ }}+{{\sin }^{2}}30=\dfrac{1}{2}\].
Note: From (s) we may think it as trigonometric identity but it is not because in trigonometric identity both the trigonometric functions have the same value of \[\theta \].This is an easy and direct problem. Take care during calculations. Here we can also use the trigonometric identities by doing some conversions.
Complete step-by-step solution -
\[1)\sin {{30}^{\circ }}\cos {{30}^{\circ }}\]
The value of \[\sin {{30}^{\circ }}=\dfrac{1}{2}\] . . . . . . . . . . . . . . . . . . . . (a)
The value of \[\cos {{30}^{\circ }}=\dfrac{\sqrt{3}}{2}\]. . . . . . . . . . . . . . . . . . . . (b)
Now substituting (a) and (b) in \[\sin {{30}^{\circ }}\cos {{30}^{\circ }}=\left( \dfrac{1}{2} \right)\times \left( \dfrac{\sqrt{3}}{2} \right)\]
\[\sin {{30}^{\circ }}\cos {{30}^{\circ }}\]\[=\dfrac{\sqrt{3}}{4}\]
\[2)\tan {{30}^{\circ }}\tan {{60}^{\circ }}\]
The value of \[\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
The value of \[\tan {{60}^{\circ }}=\sqrt{3}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
Now substituting (1) and (2) in \[\tan {{30}^{\circ }}\tan {{60}^{\circ }}=\left( \dfrac{1}{\sqrt{3}} \right)\times \left( \sqrt{3} \right)\]
\[\tan {{30}^{\circ }}\tan {{60}^{\circ }}\]= \[=1\]
\[3){{\cos }^{2}}{{60}^{\circ }}+{{\sin }^{2}}30\]
The value of \[\cos {{60}^{\circ }}=\dfrac{1}{2}\]
The value of \[{{\cos }^{2}}{{60}^{\circ }}=\dfrac{1}{4}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . (p)
The value of \[\sin {{30}^{\circ }}=\dfrac{1}{2}\]
The value of \[{{\sin }^{2}}{{30}^{\circ }}=\dfrac{1}{4}\]. . . . . . . . . . . . . . . . . . . . . . (q)
Now substituting (p) and (q) in \[{{\cos }^{2}}{{60}^{\circ }}+{{\sin }^{2}}30\] we get
\[{{\cos }^{2}}{{60}^{\circ }}+{{\sin }^{2}}30=\dfrac{1}{4}+\dfrac{1}{4}\]
\[{{\cos }^{2}}{{60}^{\circ }}+{{\sin }^{2}}30=\dfrac{1}{2}\].
Note: From (s) we may think it as trigonometric identity but it is not because in trigonometric identity both the trigonometric functions have the same value of \[\theta \].This is an easy and direct problem. Take care during calculations. Here we can also use the trigonometric identities by doing some conversions.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the minimum age for fighting the election in class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

