
Find the value of $\theta $ if $\cos 6\theta +\cos 4\theta +\cos 2\theta +1=0$ where ${{0}^{\circ }}\text{ }<\text{ }\theta \text{ }<\text{ }{{180}^{\circ }}$.
Answer
561.3k+ views
Hint: In this question, we are given an equation in terms of cosine and we have to find the value of $\theta $ where $\theta $ lies between ${{0}^{\circ }}\text{ }and\text{ }{{180}^{\circ }}$. For this, we will first simplify the given equation (using various trigonometric identities) into factors of cosine. After that, we will find a general solution of cosine when $\cos \theta ={{0}^{\circ }}$. Since we need to find $\theta $ between ${{0}^{\circ }}\text{ }and\text{ }{{180}^{\circ }}$. So we will use general values to find values that lie between ${{0}^{\circ }}\text{ }and\text{ }{{180}^{\circ }}$. Trigonometric formulas and identities that we will use are:
\[\begin{align}
& \left( i \right)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \left( ii \right)1+\cos 2\theta =2{{\cos }^{2}}\theta \\
& \left( iii \right)\cos \theta =0\Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{2}\text{ where }n=0,1,2\cdots \\
\end{align}\]
Complete step by step answer:
Here, we are given equation as,
\[\cos 6\theta +\cos 4\theta +\cos 2\theta +1=0\]
Let us first rearrange the left side, we get:
\[\left( \cos 6\theta +\cos 2\theta \right)+\left( \cos 4\theta +1 \right)=0\]
As we know that, $\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ so applying it on $\left( \cos 6\theta +\cos 2\theta \right)$ we get:
\[\begin{align}
& 2\cos \left( \dfrac{6+2}{2} \right)\theta \cos \left( \dfrac{6-2}{2} \right)\theta +\left( \cos 4\theta +1 \right)=0 \\
& \Rightarrow 2\cos 4\theta \cos 2\theta +\cos 4\theta +1=0 \\
\end{align}\]
As we know that, $1+\cos 2\theta =2{{\cos }^{2}}\theta $ so applying it on $\cos 4\theta +1$ we get:
\[\Rightarrow 2\cos 4\theta \cos 2\theta +2{{\cos }^{2}}2\theta =0\]
Taking $2\cos 2\theta $ from left side of the equation, we get:
\[\Rightarrow 2\cos 2\theta \left( \cos 4\theta +\cos 2\theta \right)=0\]
Applying $\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ on $\cos 4\theta +\cos 2\theta $ we get:
\[\begin{align}
& \Rightarrow 2\cos 2\theta \left( 2\cos \left( \dfrac{4+2}{2} \right)\theta \cos \left( \dfrac{4-2}{2} \right)\theta \right)=0 \\
& \Rightarrow 2\cos 2\theta \left( 2\cos 3\theta \cos \theta \right)=0 \\
& \Rightarrow 4\cos 2\theta \cos 3\theta \cos \theta =0 \\
\end{align}\]
Hence, we have factorized the given equation.
Now, we know that if $a\times b\times c=0$ then a = 0 or b = 0 or c = 0. Similarly, we get:
\[\cos 2\theta ,\cos 3\theta \text{ and }\cos \theta =0\]
Since, $\cos \theta =0\Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{2}\text{ where }n=0,1,2\cdots $ so let us apply this on all above factors, we get:
For $\cos 2\theta =0$,
\[\begin{align}
& 2\theta =\left( 2n+1 \right)\dfrac{\pi }{2}\text{ where }n=0,1,2,3\cdots \\
& \Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{4}\text{ where }n=0,1,2,3\cdots \\
\end{align}\]
For $\cos 3\theta =0$,
\[\begin{align}
& 3\theta =\left( 2k+1 \right)\dfrac{\pi }{2}\text{ where }k=0,1,2,3\cdots \\
& \Rightarrow \theta =\left( 2k+1 \right)\dfrac{\pi }{6}\text{ where }k=0,1,2,3\cdots \\
\end{align}\]
For $\cos \theta =0$,
\[\theta =\left( 2p+1 \right)\dfrac{\pi }{2}\text{ where }p=0,1,2,3\cdots \]
But we need values of $\theta $ only between ${{0}^{\circ }}\text{ }and\text{ }{{180}^{\circ }}$ i.e. between ${{0}^{\circ }}\text{ }and\text{ }\pi $ therefore putting n = 0, 1 we get: $\theta =\dfrac{\pi }{4}\text{ and }\theta =\dfrac{3\pi }{4}$.
Putting k = 0, 1, 2 we get: $\theta =\dfrac{\pi }{6}\text{,}\theta =\dfrac{\pi }{2}\text{ and }\theta =\dfrac{5\pi }{6}$.
Putting p = 0 we get: $\theta =\dfrac{\pi }{2}$.
Hence, required value of $\theta $ are $\dfrac{\pi }{4},\dfrac{3\pi }{4},\dfrac{\pi }{6},\dfrac{\pi }{2},\dfrac{5\pi }{6}$.
In degree value of $\theta $ are ${{45}^{\circ }},{{135}^{\circ }},{{30}^{\circ }},{{90}^{\circ }}\text{ and }{{150}^{\circ }}$.
Note: Students should carefully find value of $\theta $ between ${{0}^{\circ }}\text{ }and\text{ }{{180}^{\circ }}$ from general values of $\theta $. Student should not write repeated values again in final answer. While applying the trigonometric formula $\cos C+\cos D$ take care of the signs. Always remember that in $\left( 2n+1 \right)\dfrac{\pi }{2}$ n starts from 0 and not from 1. n = 0 should always be considered. Students should keep in mind all the trigonometric identities and formulas for solving these types of sums.
\[\begin{align}
& \left( i \right)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\
& \left( ii \right)1+\cos 2\theta =2{{\cos }^{2}}\theta \\
& \left( iii \right)\cos \theta =0\Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{2}\text{ where }n=0,1,2\cdots \\
\end{align}\]
Complete step by step answer:
Here, we are given equation as,
\[\cos 6\theta +\cos 4\theta +\cos 2\theta +1=0\]
Let us first rearrange the left side, we get:
\[\left( \cos 6\theta +\cos 2\theta \right)+\left( \cos 4\theta +1 \right)=0\]
As we know that, $\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ so applying it on $\left( \cos 6\theta +\cos 2\theta \right)$ we get:
\[\begin{align}
& 2\cos \left( \dfrac{6+2}{2} \right)\theta \cos \left( \dfrac{6-2}{2} \right)\theta +\left( \cos 4\theta +1 \right)=0 \\
& \Rightarrow 2\cos 4\theta \cos 2\theta +\cos 4\theta +1=0 \\
\end{align}\]
As we know that, $1+\cos 2\theta =2{{\cos }^{2}}\theta $ so applying it on $\cos 4\theta +1$ we get:
\[\Rightarrow 2\cos 4\theta \cos 2\theta +2{{\cos }^{2}}2\theta =0\]
Taking $2\cos 2\theta $ from left side of the equation, we get:
\[\Rightarrow 2\cos 2\theta \left( \cos 4\theta +\cos 2\theta \right)=0\]
Applying $\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ on $\cos 4\theta +\cos 2\theta $ we get:
\[\begin{align}
& \Rightarrow 2\cos 2\theta \left( 2\cos \left( \dfrac{4+2}{2} \right)\theta \cos \left( \dfrac{4-2}{2} \right)\theta \right)=0 \\
& \Rightarrow 2\cos 2\theta \left( 2\cos 3\theta \cos \theta \right)=0 \\
& \Rightarrow 4\cos 2\theta \cos 3\theta \cos \theta =0 \\
\end{align}\]
Hence, we have factorized the given equation.
Now, we know that if $a\times b\times c=0$ then a = 0 or b = 0 or c = 0. Similarly, we get:
\[\cos 2\theta ,\cos 3\theta \text{ and }\cos \theta =0\]
Since, $\cos \theta =0\Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{2}\text{ where }n=0,1,2\cdots $ so let us apply this on all above factors, we get:
For $\cos 2\theta =0$,
\[\begin{align}
& 2\theta =\left( 2n+1 \right)\dfrac{\pi }{2}\text{ where }n=0,1,2,3\cdots \\
& \Rightarrow \theta =\left( 2n+1 \right)\dfrac{\pi }{4}\text{ where }n=0,1,2,3\cdots \\
\end{align}\]
For $\cos 3\theta =0$,
\[\begin{align}
& 3\theta =\left( 2k+1 \right)\dfrac{\pi }{2}\text{ where }k=0,1,2,3\cdots \\
& \Rightarrow \theta =\left( 2k+1 \right)\dfrac{\pi }{6}\text{ where }k=0,1,2,3\cdots \\
\end{align}\]
For $\cos \theta =0$,
\[\theta =\left( 2p+1 \right)\dfrac{\pi }{2}\text{ where }p=0,1,2,3\cdots \]
But we need values of $\theta $ only between ${{0}^{\circ }}\text{ }and\text{ }{{180}^{\circ }}$ i.e. between ${{0}^{\circ }}\text{ }and\text{ }\pi $ therefore putting n = 0, 1 we get: $\theta =\dfrac{\pi }{4}\text{ and }\theta =\dfrac{3\pi }{4}$.
Putting k = 0, 1, 2 we get: $\theta =\dfrac{\pi }{6}\text{,}\theta =\dfrac{\pi }{2}\text{ and }\theta =\dfrac{5\pi }{6}$.
Putting p = 0 we get: $\theta =\dfrac{\pi }{2}$.
Hence, required value of $\theta $ are $\dfrac{\pi }{4},\dfrac{3\pi }{4},\dfrac{\pi }{6},\dfrac{\pi }{2},\dfrac{5\pi }{6}$.
In degree value of $\theta $ are ${{45}^{\circ }},{{135}^{\circ }},{{30}^{\circ }},{{90}^{\circ }}\text{ and }{{150}^{\circ }}$.
Note: Students should carefully find value of $\theta $ between ${{0}^{\circ }}\text{ }and\text{ }{{180}^{\circ }}$ from general values of $\theta $. Student should not write repeated values again in final answer. While applying the trigonometric formula $\cos C+\cos D$ take care of the signs. Always remember that in $\left( 2n+1 \right)\dfrac{\pi }{2}$ n starts from 0 and not from 1. n = 0 should always be considered. Students should keep in mind all the trigonometric identities and formulas for solving these types of sums.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

