
How do you find the value of $\theta $ for which $\cos \left( \theta +\dfrac{\pi }{2} \right)$ does not equal to $\cos \theta +\cos \left( \dfrac{\pi }{2} \right)$?
Answer
558k+ views
Hint: we start solving the problem by considering $\cos \left( \theta +\dfrac{\pi }{2} \right)\ne \cos \theta +\cos \left( \dfrac{\pi }{2} \right)$. We then make use of the fact that $\cos \left( \dfrac{\pi }{2} \right)=0$ to proceed through the problem. We then make use of the fact that $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$ to proceed further through the problem. We then make the necessary calculations and then make use of the fact that if $\sin x=0$, then the general solution is $x=n\pi $, $n\in Z$ to get the required answer.
Complete step by step answer:
According to the problem, we are asked to find the value of $\theta $ for which $\cos \left( \theta +\dfrac{\pi }{2} \right)$ does not equal to $\cos \theta +\cos \left( \dfrac{\pi }{2} \right)$.
Now, let us consider $\cos \left( \theta +\dfrac{\pi }{2} \right)\ne \cos \theta +\cos \left( \dfrac{\pi }{2} \right)$ ---(1).
We know that $\cos \left( \dfrac{\pi }{2} \right)=0$. Let us use this result in equation (1).
\[\Rightarrow \cos \left( \theta +\dfrac{\pi }{2} \right)\ne \cos \theta +0\].
\[\Rightarrow \cos \left( \theta +\dfrac{\pi }{2} \right)\ne \cos \theta \].
\[\Rightarrow \cos \left( \theta +\dfrac{\pi }{2} \right)-\cos \theta \ne 0\] ---(2).
We know that $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$. Let us use this result in equation (2).
\[\Rightarrow -2\sin \left( \dfrac{\theta +\dfrac{\pi }{2}+\theta }{2} \right)\sin \left( \dfrac{\theta +\dfrac{\pi }{2}-\theta }{2} \right)\ne 0\].
\[\Rightarrow -2\sin \left( \dfrac{2\theta +\dfrac{\pi }{2}}{2} \right)\sin \left( \dfrac{\dfrac{\pi }{2}}{2} \right)\ne 0\].
\[\Rightarrow -2\sin \left( \theta +\dfrac{\pi }{4} \right)\sin \left( \dfrac{\pi }{4} \right)\ne 0\].
\[\Rightarrow -2\sin \left( \theta +\dfrac{\pi }{4} \right)\left( \dfrac{1}{\sqrt{2}} \right)\ne 0\].
\[\Rightarrow -\sqrt{2}\sin \left( \theta +\dfrac{\pi }{4} \right)\ne 0\] ---(3).
We know that $-\sqrt{2}\ne 0$. So, we need to find the values of $\theta $ for which \[\sin \left( \theta +\dfrac{\pi }{4} \right)\ne 0\].
We know that if $\sin x=0$, then the general solution is $x=n\pi $, $n\in Z$. Let us use this result in equation (3).
\[\Rightarrow \theta +\dfrac{\pi }{4}\ne n\pi \].
\[\Rightarrow \theta \ne n\pi -\dfrac{\pi }{4}\], $n\in Z$.
So, we have found the values of $\theta $ for which $\cos \left( \theta +\dfrac{\pi }{2} \right)$ does not equal to $\cos \theta +\cos \left( \dfrac{\pi }{2} \right)$ as \[\theta \ne n\pi -\dfrac{\pi }{4}\], $n\in Z$.
$\therefore $ The values of $\theta $ for which $\cos \left( \theta +\dfrac{\pi }{2} \right)$ does not equal to $\cos \theta +\cos \left( \dfrac{\pi }{2} \right)$ is \[\theta \ne n\pi -\dfrac{\pi }{4}\], $n\in Z$.
Note:
We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. Here, we have assumed that we need to find the general solution for the values of $\theta $. We can also find the principal value of the angle $\theta $ for which the given condition is satisfied. Similarly, we can expect problems to find the values of $\theta $ for which $\cos \left( \theta +\dfrac{\pi }{4} \right)$ does not equal to $\cos \theta +\cos \left( \dfrac{\pi }{4} \right)$.
Complete step by step answer:
According to the problem, we are asked to find the value of $\theta $ for which $\cos \left( \theta +\dfrac{\pi }{2} \right)$ does not equal to $\cos \theta +\cos \left( \dfrac{\pi }{2} \right)$.
Now, let us consider $\cos \left( \theta +\dfrac{\pi }{2} \right)\ne \cos \theta +\cos \left( \dfrac{\pi }{2} \right)$ ---(1).
We know that $\cos \left( \dfrac{\pi }{2} \right)=0$. Let us use this result in equation (1).
\[\Rightarrow \cos \left( \theta +\dfrac{\pi }{2} \right)\ne \cos \theta +0\].
\[\Rightarrow \cos \left( \theta +\dfrac{\pi }{2} \right)\ne \cos \theta \].
\[\Rightarrow \cos \left( \theta +\dfrac{\pi }{2} \right)-\cos \theta \ne 0\] ---(2).
We know that $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$. Let us use this result in equation (2).
\[\Rightarrow -2\sin \left( \dfrac{\theta +\dfrac{\pi }{2}+\theta }{2} \right)\sin \left( \dfrac{\theta +\dfrac{\pi }{2}-\theta }{2} \right)\ne 0\].
\[\Rightarrow -2\sin \left( \dfrac{2\theta +\dfrac{\pi }{2}}{2} \right)\sin \left( \dfrac{\dfrac{\pi }{2}}{2} \right)\ne 0\].
\[\Rightarrow -2\sin \left( \theta +\dfrac{\pi }{4} \right)\sin \left( \dfrac{\pi }{4} \right)\ne 0\].
\[\Rightarrow -2\sin \left( \theta +\dfrac{\pi }{4} \right)\left( \dfrac{1}{\sqrt{2}} \right)\ne 0\].
\[\Rightarrow -\sqrt{2}\sin \left( \theta +\dfrac{\pi }{4} \right)\ne 0\] ---(3).
We know that $-\sqrt{2}\ne 0$. So, we need to find the values of $\theta $ for which \[\sin \left( \theta +\dfrac{\pi }{4} \right)\ne 0\].
We know that if $\sin x=0$, then the general solution is $x=n\pi $, $n\in Z$. Let us use this result in equation (3).
\[\Rightarrow \theta +\dfrac{\pi }{4}\ne n\pi \].
\[\Rightarrow \theta \ne n\pi -\dfrac{\pi }{4}\], $n\in Z$.
So, we have found the values of $\theta $ for which $\cos \left( \theta +\dfrac{\pi }{2} \right)$ does not equal to $\cos \theta +\cos \left( \dfrac{\pi }{2} \right)$ as \[\theta \ne n\pi -\dfrac{\pi }{4}\], $n\in Z$.
$\therefore $ The values of $\theta $ for which $\cos \left( \theta +\dfrac{\pi }{2} \right)$ does not equal to $\cos \theta +\cos \left( \dfrac{\pi }{2} \right)$ is \[\theta \ne n\pi -\dfrac{\pi }{4}\], $n\in Z$.
Note:
We should perform each step carefully in order to avoid confusion and calculation mistakes while solving this problem. Here, we have assumed that we need to find the general solution for the values of $\theta $. We can also find the principal value of the angle $\theta $ for which the given condition is satisfied. Similarly, we can expect problems to find the values of $\theta $ for which $\cos \left( \theta +\dfrac{\pi }{4} \right)$ does not equal to $\cos \theta +\cos \left( \dfrac{\pi }{4} \right)$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

