
Find the value of the variable in given linear equations :
i) 7x – 5 = 2x
ii) 5x – 12 = 2x – 6
iii) 7p – 3 = 3p + 8
Answer
583.5k+ views
1 likes
Hint: Consider all the linear equations separately, make the variables as subjects or take variables to one side and the constant terms on the other side and hence find the value of the variable.
Complete step-by-step answer:
We are given with linear equation to find the values of variables which are:
i) 7x – 5 = 2x
ii) 5x – 12 = 2x – 6
iii) 7p – 3 = 3p + 8
First we will understand what linear equations are and learn some facts about them.
Let a linear equation be written in the form of ax + b = 0.
Where ‘a’ and ‘b’ are real numbers and ‘x’ is a variable. This is sometimes called the standard form of linear equations. Please note that most linear equations will not start of this form. Also the variable may or may not be as ‘x’ so please don’t get too locked into always seeing ‘x’ there.
Now for solving linear equations we will make heavy use of facts which are,
i) If a = b then a+c = b+c for any value c. This means that we can add a number ‘c’ to both the sides of the equation and the value of the equation does not change.
ii) If a = b then a-c = b-c for any value c. This means that we can subtract a number ‘c’ from both the sides of the equation and the value of the equation does not change.
iii) If a = b then ac = bc for any non-zero value of c, so that the value of the equation remains unaltered.
iv) If a = b then for any non-zero value of c, so that the value of the equation remains unaltered.
These points are very important and help very much while solving any liner type of equation. They should be kept in mind.
i) So the 1st linear equation given as,
7x – 5 = 2x………….(i)
Now subtracting ‘2x’ from both the side of equation (i) we get,
5x – 5 = 0……………..(ii)
Now adding ‘5’ to both the sides of equation (ii) we get,
5x = 5
So the value of x is 1.
ii) The 2nd linear equation given is
5x – 12 = 2x – 6……………..(iii)
Now adding 12 to both sides of equation (iii) we get,
5x = 2x + 6…………………….(iv)
Now subtracting 2x from both the sides we get,
3x = 6
Dividing throughout by ‘3’, we get the value of x as 2.
iii) So, the 3rd linear equation given is
7p – 3 = 3p + 8…………….(v)
Now adding 3 to both sides of equation (v) we get,
7p = 3p + 11……………..(vi)
Now subtracting 3p from both the sides of equation (vi) we get,
4p = 11
So the value of p is .
Note: Students confuse themselves if they see any other variable other than x as they don’t have a habit to see it. Also they should follow all the rules of linear equations. Another simpler approach is just bringing all the variables to the left side and known values to the right side and solving accordingly.
Complete step-by-step answer:
We are given with linear equation to find the values of variables which are:
i) 7x – 5 = 2x
ii) 5x – 12 = 2x – 6
iii) 7p – 3 = 3p + 8
First we will understand what linear equations are and learn some facts about them.
Let a linear equation be written in the form of ax + b = 0.
Where ‘a’ and ‘b’ are real numbers and ‘x’ is a variable. This is sometimes called the standard form of linear equations. Please note that most linear equations will not start of this form. Also the variable may or may not be as ‘x’ so please don’t get too locked into always seeing ‘x’ there.
Now for solving linear equations we will make heavy use of facts which are,
i) If a = b then a+c = b+c for any value c. This means that we can add a number ‘c’ to both the sides of the equation and the value of the equation does not change.
ii) If a = b then a-c = b-c for any value c. This means that we can subtract a number ‘c’ from both the sides of the equation and the value of the equation does not change.
iii) If a = b then ac = bc for any non-zero value of c, so that the value of the equation remains unaltered.
iv) If a = b then
These points are very important and help very much while solving any liner type of equation. They should be kept in mind.
i) So the 1st linear equation given as,
7x – 5 = 2x………….(i)
Now subtracting ‘2x’ from both the side of equation (i) we get,
5x – 5 = 0……………..(ii)
Now adding ‘5’ to both the sides of equation (ii) we get,
5x = 5
So the value of x is 1.
ii) The 2nd linear equation given is
5x – 12 = 2x – 6……………..(iii)
Now adding 12 to both sides of equation (iii) we get,
5x = 2x + 6…………………….(iv)
Now subtracting 2x from both the sides we get,
3x = 6
Dividing throughout by ‘3’, we get the value of x as 2.
iii) So, the 3rd linear equation given is
7p – 3 = 3p + 8…………….(v)
Now adding 3 to both sides of equation (v) we get,
7p = 3p + 11……………..(vi)
Now subtracting 3p from both the sides of equation (vi) we get,
4p = 11
So the value of p is
Note: Students confuse themselves if they see any other variable other than x as they don’t have a habit to see it. Also they should follow all the rules of linear equations. Another simpler approach is just bringing all the variables to the left side and known values to the right side and solving accordingly.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Three beakers labelled as A B and C each containing 25 mL of water were taken A small amount of NaOH anhydrous CuSO4 and NaCl were added to the beakers A B and C respectively It was observed that there was an increase in the temperature of the solutions contained in beakers A and B whereas in case of beaker C the temperature of the solution falls Which one of the following statements isarecorrect i In beakers A and B exothermic process has occurred ii In beakers A and B endothermic process has occurred iii In beaker C exothermic process has occurred iv In beaker C endothermic process has occurred

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
One cusec is equal to how many liters class 8 maths CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

In what language is our national anthem written A Sanskrit class 8 social science CBSE

When people say No pun intended what does that mea class 8 english CBSE

Which one of the following countries does not have class 8 social science CBSE
