
Find the value of the trigonometric expression \[\tan \left( {{360}^{{}^\circ \;}}-A \right)\].
Answer
606.9k+ views
Hint: Use the relation \[\tan \left( x \right)=\dfrac{\sin \left( x \right)}{\cos \left( x \right)}\] and the expansion formula \[\sin \left( s-t \right)=-\cos \left( s \right)\sin \left( t \right)+\cos \left( t \right)\sin \left( s \right)\] and\[\cos \left( s-t \right)=\cos \left( s \right)\cos \left( t \right)+\sin \left( s \right)\sin \left( t \right)\], then simplify to get the required value of \[\tan \left( {{360}^{{}^\circ \;}}-A \right)\].
Complete step-by-step solution -
In the question, we have to find the value of the trigonometric expression \[\tan \left( {{360}^{{}^\circ \;}}-A \right)\].
Now we will use the relation \[\tan \left( x \right)=\dfrac{\sin \left( x \right)}{\cos \left( x \right)}\] and we get:
\[\Rightarrow \tan \left( {{360}^{{}^\circ \;}}-A \right)=\dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}\]
Next we will apply the expansion formula of \[\sin \left( s-t \right)=-\cos \left( s \right)\sin \left( t \right)+\cos \left( t \right)\sin \left( s \right)\] and \[\cos \left( s-t \right)=\cos \left( s \right)\cos \left( t \right)+\sin \left( s \right)\sin \left( t \right)\]. Which will give us;
\[\begin{align}
& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\cos \left( {{360}^{{}^\circ \;}} \right)\sin \left( A \right)+\cos \left( A \right)\sin \left( {{360}^{{}^\circ \;}} \right)}{\cos \left( {{360}^{{}^\circ \;}}-A \right)} \\
& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\cos \left( {{360}^{{}^\circ \;}} \right)\sin \left( A \right)+\cos \left( A \right)\sin \left( {{360}^{{}^\circ \;}} \right)}{\cos \left( {{360}^{{}^\circ \;}} \right)\cos \left( A \right)+\sin \left( {{360}^{{}^\circ \;}} \right)\sin \left( A \right)} \\
& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\sin \left( A \right)+0}{\cos \left( A \right)+0}\,\,\,\,\,\,\,\,\,\,\,\,\because \sin \left( {{360}^{{}^\circ \;}} \right)=0,\,\,\cos \left( {{360}^{{}^\circ \;}} \right)=1 \\
& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\sin \left( A \right)}{\cos \left( A \right)} \\
& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=-\tan \left( A \right) \\
\end{align}\]
So finally, we can say that \[\tan \left( {{360}^{{}^\circ \;}}-A \right)=-\tan \left( A \right)\]. So this is the required value.
Note: The alternate way to solve this problem is by using the direct formula that says \[\tan \left( {{360}^{{}^\circ \;}}-\theta \right)=-\tan \left( \theta \right)\]. Here we can also use directly the formula of tangent of difference of two angles like $\tan(A-B) = \dfrac{\tan A - \tan B}{1+ \tan A \tan B}$ where A = ${360}^\circ$ and B = A. For Such type of trigonometric problem we have many approaches and we get the same answer if we apply correctly all the trigonometric formulas and identities.
Complete step-by-step solution -
In the question, we have to find the value of the trigonometric expression \[\tan \left( {{360}^{{}^\circ \;}}-A \right)\].
Now we will use the relation \[\tan \left( x \right)=\dfrac{\sin \left( x \right)}{\cos \left( x \right)}\] and we get:
\[\Rightarrow \tan \left( {{360}^{{}^\circ \;}}-A \right)=\dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}\]
Next we will apply the expansion formula of \[\sin \left( s-t \right)=-\cos \left( s \right)\sin \left( t \right)+\cos \left( t \right)\sin \left( s \right)\] and \[\cos \left( s-t \right)=\cos \left( s \right)\cos \left( t \right)+\sin \left( s \right)\sin \left( t \right)\]. Which will give us;
\[\begin{align}
& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\cos \left( {{360}^{{}^\circ \;}} \right)\sin \left( A \right)+\cos \left( A \right)\sin \left( {{360}^{{}^\circ \;}} \right)}{\cos \left( {{360}^{{}^\circ \;}}-A \right)} \\
& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\cos \left( {{360}^{{}^\circ \;}} \right)\sin \left( A \right)+\cos \left( A \right)\sin \left( {{360}^{{}^\circ \;}} \right)}{\cos \left( {{360}^{{}^\circ \;}} \right)\cos \left( A \right)+\sin \left( {{360}^{{}^\circ \;}} \right)\sin \left( A \right)} \\
& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\sin \left( A \right)+0}{\cos \left( A \right)+0}\,\,\,\,\,\,\,\,\,\,\,\,\because \sin \left( {{360}^{{}^\circ \;}} \right)=0,\,\,\cos \left( {{360}^{{}^\circ \;}} \right)=1 \\
& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=\dfrac{-\sin \left( A \right)}{\cos \left( A \right)} \\
& \Rightarrow \dfrac{\sin \left( -A+{{360}^{{}^\circ \;}} \right)}{\cos \left( -A+{{360}^{{}^\circ \;}} \right)}=-\tan \left( A \right) \\
\end{align}\]
So finally, we can say that \[\tan \left( {{360}^{{}^\circ \;}}-A \right)=-\tan \left( A \right)\]. So this is the required value.
Note: The alternate way to solve this problem is by using the direct formula that says \[\tan \left( {{360}^{{}^\circ \;}}-\theta \right)=-\tan \left( \theta \right)\]. Here we can also use directly the formula of tangent of difference of two angles like $\tan(A-B) = \dfrac{\tan A - \tan B}{1+ \tan A \tan B}$ where A = ${360}^\circ$ and B = A. For Such type of trigonometric problem we have many approaches and we get the same answer if we apply correctly all the trigonometric formulas and identities.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

