Find the value of the sum $\dfrac{1}{3} + \dfrac{3}{4} + \dfrac{5}{6}$.
Answer
Verified
505.2k+ views
Hint: Here, we will be proceeding by finding out the LCM of the numbers (3,4 and 6) which are present in the denominator of the fractions whose sum we need to find.
Complete step-by-step answer:
Let x be the value of the sum $\dfrac{1}{3} + \dfrac{3}{4} + \dfrac{5}{6}$
i.e., $x = \dfrac{1}{3} + \dfrac{3}{4} + \dfrac{5}{6}$
In order to solve the above sum of different fractions, we will take the LCM. Since, the LCM of 3,4 and 6 can be calculated by multiplying all the existing prime factors when these numbers are represented in a form of multiplication of prime factors.
Number 3 is itself a prime number, number 4 can be represented as the multiplication of 2 with 2 where 2 is the prime number and number 6 can be represented as the multiplication of 2 with 3 where both 2 and 3 are prime factors of 6.
So, $3 = 3$, $4 = 2 \times 2$ and $6 = 2 \times 3$
Clearly, all the existing prime factors are 2,2 and 3. So, LCM of 3,4 and 6 is the multiplication of prime factors 2,2 and 3.
i.e., LCM of 3,4 and 6 $ = 2 \times 2 \times 3 = 12$
Now, the sum whose value is required can be written as $x = \dfrac{1}{3} + \dfrac{3}{4} + \dfrac{5}{6} = \dfrac{{\left( {4 \times 1} \right) + \left( {3 \times 3} \right) + \left( {2 \times 5} \right)}}{{12}} = \dfrac{{4 + 9 + 10}}{{12}} = \dfrac{{23}}{{12}}$
Hence, the value of the sum $\dfrac{1}{3} + \dfrac{3}{4} + \dfrac{5}{6}$ is $\dfrac{{23}}{{12}}$.
Note: In this particular problem, we calculated the LCM of 3,4 and 6 (which are the denominators of the fractions whose sum is required) and then that LCM is divided with the denominators of the fractions and the quotient obtained is multiplied with the respective numerator of that fraction and this is done for each fraction.
Complete step-by-step answer:
Let x be the value of the sum $\dfrac{1}{3} + \dfrac{3}{4} + \dfrac{5}{6}$
i.e., $x = \dfrac{1}{3} + \dfrac{3}{4} + \dfrac{5}{6}$
In order to solve the above sum of different fractions, we will take the LCM. Since, the LCM of 3,4 and 6 can be calculated by multiplying all the existing prime factors when these numbers are represented in a form of multiplication of prime factors.
Number 3 is itself a prime number, number 4 can be represented as the multiplication of 2 with 2 where 2 is the prime number and number 6 can be represented as the multiplication of 2 with 3 where both 2 and 3 are prime factors of 6.
So, $3 = 3$, $4 = 2 \times 2$ and $6 = 2 \times 3$
Clearly, all the existing prime factors are 2,2 and 3. So, LCM of 3,4 and 6 is the multiplication of prime factors 2,2 and 3.
i.e., LCM of 3,4 and 6 $ = 2 \times 2 \times 3 = 12$
Now, the sum whose value is required can be written as $x = \dfrac{1}{3} + \dfrac{3}{4} + \dfrac{5}{6} = \dfrac{{\left( {4 \times 1} \right) + \left( {3 \times 3} \right) + \left( {2 \times 5} \right)}}{{12}} = \dfrac{{4 + 9 + 10}}{{12}} = \dfrac{{23}}{{12}}$
Hence, the value of the sum $\dfrac{1}{3} + \dfrac{3}{4} + \dfrac{5}{6}$ is $\dfrac{{23}}{{12}}$.
Note: In this particular problem, we calculated the LCM of 3,4 and 6 (which are the denominators of the fractions whose sum is required) and then that LCM is divided with the denominators of the fractions and the quotient obtained is multiplied with the respective numerator of that fraction and this is done for each fraction.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 Biology: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Trending doubts
The planet known as the blue planet is the A Earth class 6 physics CBSE
Number of Prime between 1 to 100 is class 6 maths CBSE
The planet nearest to earth is A Mercury B Venus C class 6 social science CBSE
Polymorphism is shown by A Physalia B Termite C Trypanosoma class 6 biology CBSE
When was the universal adult franchise granted in India class 6 social science CBSE
Two positive numbers have their HCF as 12 and their class 6 maths CBSE