
Find the value of the series $x{{\log }_{e}}a+\dfrac{{{x}^{3}}}{3!}{{\left( {{\log }_{e}}a \right)}^{3}}+\dfrac{{{x}^{5}}}{5!}{{\left( {{\log }_{e}}a \right)}^{5}}+...$\[\]
A. $\cosh \left( x{{\log }_{e}}a \right)$\[\]
B. $\coth \left( x{{\log }_{e}}a \right)$\[\]
C $\sinh \left( x{{\log }_{e}}a \right)$\[\]
D. $\tanh \left( x{{\log }_{e}}a \right)$\[\]
Answer
510.6k+ views
Hint: Use the exponential series $ {{e}^{x}}=1+x+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...$ and the definition of hyperbolic trigonometric functions $\left( \sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2},\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \right)$ to test whether Option A and C is correct. Use the Taylor series expansion whether option B and D is correct. \[\]
Complete step-by-step answer:
We know that the base of natural logarithm $e$ is defined as $e=\underset{n\to 0}{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{n} \right)}^{n}}$. We take some real number $x$ and for some $n>1$ we use the expansion of ${{\left( 1+\dfrac{1}{n} \right)}^{nx}}$. So
\[\begin{align}
& {{\left( 1+\dfrac{1}{n} \right)}^{nx}}=1+nx\times \dfrac{1}{n}+\dfrac{nx\left( nx-1 \right)}{2!}\times \dfrac{1}{{{n}^{2}}}+... \\
& \Rightarrow {{\left\{ {{\left( 1+\dfrac{1}{n} \right)}^{n}} \right\}}^{x}}=1+x+\dfrac{x\left( x-\dfrac{1}{n} \right)}{2!}+... \\
\end{align}\]
Now let us take the limit $n\to \infty $ above and get,
\[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...\]
Which is called the exponential series or the expansion of ${{e}^{x}}$. We find the expansion of ${{e}^{-x}}$ by putting $-x$ in the above expansion. We have,
\[\begin{align}
& {{e}^{-x}}=1+\dfrac{\left( -x \right)}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{\left( -x \right)}^{3}}}{3!}+... \\
& \Rightarrow {{e}^{-x}}=1-x+\dfrac{{{x}^{2}}}{2!}-{{x}^{3}}+... \\
\end{align}\]
The hyperbolic functions are analogues of trigonometric functions defined for hyperbola instead of circle. The parametric form of coordinate in two dimensions $\left( \cos t,\sin t \right)$ which form a circle of unit radius. Similarly the parametric point $\left( \cosh t,\sinh t \right)$ forms the right half of the equilateral hyperbola. The definition of basic hyperbolic trigonometric functions in terms of exponential function in the a parametric form is given as
\[ \begin{align}
& \sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \\
& \cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \\
\end{align}\]
The given series is
\[x{{\log }_{e}}a+\dfrac{{{x}^{3}}}{3!}{{\left( {{\log }_{e}}a \right)}^{3}}+\dfrac{{{x}^{5}}}{5!}{{\left( {{\log }_{e}}a \right)}^{5}}+...\]
The above can also be expressed as
\[x{{\log }_{e}}a+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{3}}}{3!}+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{5}}}{5!}+...\text{ }....(1)\]
So let us check each option given in the question. We need the exponential expansion of ${{e}^{x{{\log }_{e}}a}},{{e}^{-x{{\log }_{e}}a}},{{e}^{2}}^{x{{\log }_{e}}a}$. So we have,
\[\begin{align}
& {{e}^{x{{\log }_{e}}a}}=1+\dfrac{x{{\log }_{e}}a}{1!}+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{2}}}{2!}+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{3}}}{3!}+... \\
& {{e}^{-x{{\log }_{e}}a}}=1-\dfrac{x{{\log }_{e}}a}{1!}+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{2}}}{2!}-\dfrac{{{\left( x{{\log }_{e}}a \right)}^{3}}}{3!}+... \\
\end{align}\]
Checking Option A:\[\]
We see in this option hyperbolic cosine function is given. Using the definition of hyperbolic cosine we get
\[\cosh \left( x{{\log }_{e}}a \right)=\dfrac{{{e}^{x{{\log }_{e}}a}}+{{e}^{x{{\log }_{e}}a}}}{2}=2\left( 1+\dfrac{{{x}^{2}}{{\log }_{e}}a}{2!}+\dfrac{{{x}^{4}}{{\log }_{e}}a}{4!}+... \right)\]
We see that the simplified series is not the same as series (1). So option A is incorrect.
Checking option B.\[\]
We see in this option a hyperbolic cotangent function is given. We cannot expand the cotangent with exponential series. We need Taylor ‘s series expansion of co-tangent function which is defined for some $x$ lies between 0 and $\pi $as $\dfrac{1}{x}+\dfrac{x}{3}-\dfrac{{{x}^{3}}}{45}+..$. . If we shall put $x=x{{\log }_{e}}a$ , it will not be the same as the series(1). So option B is incorrect. \[\]
Checking Option C\[\]
Here we are given the sine hyperbolic function.
\[\sinh \left( x{{\log }_{e}}a \right)=\dfrac{{{e}^{x{{\log }_{e}}a}}-{{e}^{-x{{\log }_{e}}a}}}{2}=x{{\log }_{e}}a+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{3}}}{2!}+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{5}}}{5!}+...\]
The obtained series is the same as series(1) . So the correct option is C.\[\]
Note: We can also check the option D with Taylor’s series expansion of tangent function which defied for some $\left| x \right|<\dfrac{\pi }{2}$ as $x-\dfrac{{{x}^{3}}}{3}+\dfrac{2{{x}^{3}}}{45}+...$ . We can also express but not expand hyperbolic tangent and cotangent function as $\tanh x=\dfrac{{{e}^{2x}}-1}{{{e}^{2x}}+1},\coth x=\dfrac{{{e}^{2x}}+1}{{{e}^{2x}}-1}$
Complete step-by-step answer:
We know that the base of natural logarithm $e$ is defined as $e=\underset{n\to 0}{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{n} \right)}^{n}}$. We take some real number $x$ and for some $n>1$ we use the expansion of ${{\left( 1+\dfrac{1}{n} \right)}^{nx}}$. So
\[\begin{align}
& {{\left( 1+\dfrac{1}{n} \right)}^{nx}}=1+nx\times \dfrac{1}{n}+\dfrac{nx\left( nx-1 \right)}{2!}\times \dfrac{1}{{{n}^{2}}}+... \\
& \Rightarrow {{\left\{ {{\left( 1+\dfrac{1}{n} \right)}^{n}} \right\}}^{x}}=1+x+\dfrac{x\left( x-\dfrac{1}{n} \right)}{2!}+... \\
\end{align}\]
Now let us take the limit $n\to \infty $ above and get,
\[{{e}^{x}}=1+\dfrac{x}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{x}^{3}}}{3!}+...\]
Which is called the exponential series or the expansion of ${{e}^{x}}$. We find the expansion of ${{e}^{-x}}$ by putting $-x$ in the above expansion. We have,
\[\begin{align}
& {{e}^{-x}}=1+\dfrac{\left( -x \right)}{1!}+\dfrac{{{x}^{2}}}{2!}+\dfrac{{{\left( -x \right)}^{3}}}{3!}+... \\
& \Rightarrow {{e}^{-x}}=1-x+\dfrac{{{x}^{2}}}{2!}-{{x}^{3}}+... \\
\end{align}\]
The hyperbolic functions are analogues of trigonometric functions defined for hyperbola instead of circle. The parametric form of coordinate in two dimensions $\left( \cos t,\sin t \right)$ which form a circle of unit radius. Similarly the parametric point $\left( \cosh t,\sinh t \right)$ forms the right half of the equilateral hyperbola. The definition of basic hyperbolic trigonometric functions in terms of exponential function in the a parametric form is given as
\[ \begin{align}
& \sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2} \\
& \cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2} \\
\end{align}\]
The given series is
\[x{{\log }_{e}}a+\dfrac{{{x}^{3}}}{3!}{{\left( {{\log }_{e}}a \right)}^{3}}+\dfrac{{{x}^{5}}}{5!}{{\left( {{\log }_{e}}a \right)}^{5}}+...\]
The above can also be expressed as
\[x{{\log }_{e}}a+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{3}}}{3!}+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{5}}}{5!}+...\text{ }....(1)\]
So let us check each option given in the question. We need the exponential expansion of ${{e}^{x{{\log }_{e}}a}},{{e}^{-x{{\log }_{e}}a}},{{e}^{2}}^{x{{\log }_{e}}a}$. So we have,
\[\begin{align}
& {{e}^{x{{\log }_{e}}a}}=1+\dfrac{x{{\log }_{e}}a}{1!}+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{2}}}{2!}+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{3}}}{3!}+... \\
& {{e}^{-x{{\log }_{e}}a}}=1-\dfrac{x{{\log }_{e}}a}{1!}+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{2}}}{2!}-\dfrac{{{\left( x{{\log }_{e}}a \right)}^{3}}}{3!}+... \\
\end{align}\]
Checking Option A:\[\]
We see in this option hyperbolic cosine function is given. Using the definition of hyperbolic cosine we get
\[\cosh \left( x{{\log }_{e}}a \right)=\dfrac{{{e}^{x{{\log }_{e}}a}}+{{e}^{x{{\log }_{e}}a}}}{2}=2\left( 1+\dfrac{{{x}^{2}}{{\log }_{e}}a}{2!}+\dfrac{{{x}^{4}}{{\log }_{e}}a}{4!}+... \right)\]
We see that the simplified series is not the same as series (1). So option A is incorrect.
Checking option B.\[\]
We see in this option a hyperbolic cotangent function is given. We cannot expand the cotangent with exponential series. We need Taylor ‘s series expansion of co-tangent function which is defined for some $x$ lies between 0 and $\pi $as $\dfrac{1}{x}+\dfrac{x}{3}-\dfrac{{{x}^{3}}}{45}+..$. . If we shall put $x=x{{\log }_{e}}a$ , it will not be the same as the series(1). So option B is incorrect. \[\]
Checking Option C\[\]
Here we are given the sine hyperbolic function.
\[\sinh \left( x{{\log }_{e}}a \right)=\dfrac{{{e}^{x{{\log }_{e}}a}}-{{e}^{-x{{\log }_{e}}a}}}{2}=x{{\log }_{e}}a+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{3}}}{2!}+\dfrac{{{\left( x{{\log }_{e}}a \right)}^{5}}}{5!}+...\]
The obtained series is the same as series(1) . So the correct option is C.\[\]
Note: We can also check the option D with Taylor’s series expansion of tangent function which defied for some $\left| x \right|<\dfrac{\pi }{2}$ as $x-\dfrac{{{x}^{3}}}{3}+\dfrac{2{{x}^{3}}}{45}+...$ . We can also express but not expand hyperbolic tangent and cotangent function as $\tanh x=\dfrac{{{e}^{2x}}-1}{{{e}^{2x}}+1},\coth x=\dfrac{{{e}^{2x}}+1}{{{e}^{2x}}-1}$
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

The total number of isomers considering both the structural class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
