
Find the value of the integral $\int {{{\left( {\tan x - \cot x} \right)}^2}dx} $.
\[
{\text{A}}{\text{. }}\tan x + x + c \\
{\text{B}}{\text{. }}\tan x - x + c \\
{\text{C}}{\text{. }}\tan x - \cot x + c \\
{\text{D}}{\text{. }}\tan x - \cot x - 4x + c \\
\]
Answer
618k+ views
Hint: Here, we will proceed by using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ and then some basic formulas of trigonometry i.e., ${\left( {\sec x} \right)^2} = 1 + {\left( {\tan x} \right)^2}$ and ${\left( {\text{cosec x}} \right)^2} = 1 + {\left( {\cot x} \right)^2}$ are used in order to evaluate the value of the integral.
Complete Step-by-Step solution:
Let us suppose the integral ${\text{I}} = \int {{{\left( {\tan x - \cot x} \right)}^2}dx} $
Using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, the above integral becomes
$ \Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\cot x} \right)} \right]dx} $
Using the definition of cotangent trigonometric function i.e., $\cot x = \dfrac{1}{{\tan x}}$, we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\dfrac{1}{{\tan x}}} \right)} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} {\text{ }} \to {\text{(1)}} \\
$
As we know that ${\left( {\sec x} \right)^2} = 1 + {\left( {\tan x} \right)^2}$
$ \Rightarrow {\left( {\tan x} \right)^2} = {\left( {\sec x} \right)^2} - 1{\text{ }} \to {\text{(2)}}$
Also we know that ${\left( {\cos ecx} \right)^2} = 1 + {\left( {\cot x} \right)^2}$
$ \Rightarrow {\left( {\cot x} \right)^2} = {\left( {{\text{cosec}}x} \right)^2} - 1{\text{ }} \to {\text{(3)}}$
Using equation (2) and equation (3) in equation (1), we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} - 1 + {{\left( {{\text{cosec}}x} \right)}^2} - 1 - 2} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} + {{\left( {{\text{cosec}}x} \right)}^2} - 4} \right]dx} \\
\Rightarrow {\text{I}} = \int {{{\left( {\sec x} \right)}^2}dx} + \int {{{\left( {{\text{cosec}}x} \right)}^2}dx} - 4\int {dx} \\
\Rightarrow {\text{I}} = \tan x - \cot x - 4x + c \\
$
where c is the constant of integration.
Therefore, the value of the integral $\int {{{\left( {\tan x - \cot x} \right)}^2}dx} $ is equal to $\tan x - \cot x - 4x + c$.
Hence, option D is correct.
Note: In this particular problem, ${\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} $ can only be solved by converting the tangent and cotangent trigonometric terms into secant and cosecant trigonometric terms. Since, the given integral is an indefinite integral (i.e., limits of integration are not there) that’s why we have used the constant of integration.
Complete Step-by-Step solution:
Let us suppose the integral ${\text{I}} = \int {{{\left( {\tan x - \cot x} \right)}^2}dx} $
Using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, the above integral becomes
$ \Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\cot x} \right)} \right]dx} $
Using the definition of cotangent trigonometric function i.e., $\cot x = \dfrac{1}{{\tan x}}$, we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\dfrac{1}{{\tan x}}} \right)} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} {\text{ }} \to {\text{(1)}} \\
$
As we know that ${\left( {\sec x} \right)^2} = 1 + {\left( {\tan x} \right)^2}$
$ \Rightarrow {\left( {\tan x} \right)^2} = {\left( {\sec x} \right)^2} - 1{\text{ }} \to {\text{(2)}}$
Also we know that ${\left( {\cos ecx} \right)^2} = 1 + {\left( {\cot x} \right)^2}$
$ \Rightarrow {\left( {\cot x} \right)^2} = {\left( {{\text{cosec}}x} \right)^2} - 1{\text{ }} \to {\text{(3)}}$
Using equation (2) and equation (3) in equation (1), we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} - 1 + {{\left( {{\text{cosec}}x} \right)}^2} - 1 - 2} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} + {{\left( {{\text{cosec}}x} \right)}^2} - 4} \right]dx} \\
\Rightarrow {\text{I}} = \int {{{\left( {\sec x} \right)}^2}dx} + \int {{{\left( {{\text{cosec}}x} \right)}^2}dx} - 4\int {dx} \\
\Rightarrow {\text{I}} = \tan x - \cot x - 4x + c \\
$
where c is the constant of integration.
Therefore, the value of the integral $\int {{{\left( {\tan x - \cot x} \right)}^2}dx} $ is equal to $\tan x - \cot x - 4x + c$.
Hence, option D is correct.
Note: In this particular problem, ${\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} $ can only be solved by converting the tangent and cotangent trigonometric terms into secant and cosecant trigonometric terms. Since, the given integral is an indefinite integral (i.e., limits of integration are not there) that’s why we have used the constant of integration.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

