
Find the value of the integral $\int {{{\left( {\tan x - \cot x} \right)}^2}dx} $.
\[
{\text{A}}{\text{. }}\tan x + x + c \\
{\text{B}}{\text{. }}\tan x - x + c \\
{\text{C}}{\text{. }}\tan x - \cot x + c \\
{\text{D}}{\text{. }}\tan x - \cot x - 4x + c \\
\]
Answer
519.3k+ views
Hint: Here, we will proceed by using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ and then some basic formulas of trigonometry i.e., ${\left( {\sec x} \right)^2} = 1 + {\left( {\tan x} \right)^2}$ and ${\left( {\text{cosec x}} \right)^2} = 1 + {\left( {\cot x} \right)^2}$ are used in order to evaluate the value of the integral.
Complete Step-by-Step solution:
Let us suppose the integral ${\text{I}} = \int {{{\left( {\tan x - \cot x} \right)}^2}dx} $
Using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, the above integral becomes
$ \Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\cot x} \right)} \right]dx} $
Using the definition of cotangent trigonometric function i.e., $\cot x = \dfrac{1}{{\tan x}}$, we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\dfrac{1}{{\tan x}}} \right)} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} {\text{ }} \to {\text{(1)}} \\
$
As we know that ${\left( {\sec x} \right)^2} = 1 + {\left( {\tan x} \right)^2}$
$ \Rightarrow {\left( {\tan x} \right)^2} = {\left( {\sec x} \right)^2} - 1{\text{ }} \to {\text{(2)}}$
Also we know that ${\left( {\cos ecx} \right)^2} = 1 + {\left( {\cot x} \right)^2}$
$ \Rightarrow {\left( {\cot x} \right)^2} = {\left( {{\text{cosec}}x} \right)^2} - 1{\text{ }} \to {\text{(3)}}$
Using equation (2) and equation (3) in equation (1), we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} - 1 + {{\left( {{\text{cosec}}x} \right)}^2} - 1 - 2} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} + {{\left( {{\text{cosec}}x} \right)}^2} - 4} \right]dx} \\
\Rightarrow {\text{I}} = \int {{{\left( {\sec x} \right)}^2}dx} + \int {{{\left( {{\text{cosec}}x} \right)}^2}dx} - 4\int {dx} \\
\Rightarrow {\text{I}} = \tan x - \cot x - 4x + c \\
$
where c is the constant of integration.
Therefore, the value of the integral $\int {{{\left( {\tan x - \cot x} \right)}^2}dx} $ is equal to $\tan x - \cot x - 4x + c$.
Hence, option D is correct.
Note: In this particular problem, ${\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} $ can only be solved by converting the tangent and cotangent trigonometric terms into secant and cosecant trigonometric terms. Since, the given integral is an indefinite integral (i.e., limits of integration are not there) that’s why we have used the constant of integration.
Complete Step-by-Step solution:
Let us suppose the integral ${\text{I}} = \int {{{\left( {\tan x - \cot x} \right)}^2}dx} $
Using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, the above integral becomes
$ \Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\cot x} \right)} \right]dx} $
Using the definition of cotangent trigonometric function i.e., $\cot x = \dfrac{1}{{\tan x}}$, we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\dfrac{1}{{\tan x}}} \right)} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} {\text{ }} \to {\text{(1)}} \\
$
As we know that ${\left( {\sec x} \right)^2} = 1 + {\left( {\tan x} \right)^2}$
$ \Rightarrow {\left( {\tan x} \right)^2} = {\left( {\sec x} \right)^2} - 1{\text{ }} \to {\text{(2)}}$
Also we know that ${\left( {\cos ecx} \right)^2} = 1 + {\left( {\cot x} \right)^2}$
$ \Rightarrow {\left( {\cot x} \right)^2} = {\left( {{\text{cosec}}x} \right)^2} - 1{\text{ }} \to {\text{(3)}}$
Using equation (2) and equation (3) in equation (1), we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} - 1 + {{\left( {{\text{cosec}}x} \right)}^2} - 1 - 2} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} + {{\left( {{\text{cosec}}x} \right)}^2} - 4} \right]dx} \\
\Rightarrow {\text{I}} = \int {{{\left( {\sec x} \right)}^2}dx} + \int {{{\left( {{\text{cosec}}x} \right)}^2}dx} - 4\int {dx} \\
\Rightarrow {\text{I}} = \tan x - \cot x - 4x + c \\
$
where c is the constant of integration.
Therefore, the value of the integral $\int {{{\left( {\tan x - \cot x} \right)}^2}dx} $ is equal to $\tan x - \cot x - 4x + c$.
Hence, option D is correct.
Note: In this particular problem, ${\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} $ can only be solved by converting the tangent and cotangent trigonometric terms into secant and cosecant trigonometric terms. Since, the given integral is an indefinite integral (i.e., limits of integration are not there) that’s why we have used the constant of integration.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
