
Find the value of the integral $\int {{{\left( {\tan x - \cot x} \right)}^2}dx} $.
\[
{\text{A}}{\text{. }}\tan x + x + c \\
{\text{B}}{\text{. }}\tan x - x + c \\
{\text{C}}{\text{. }}\tan x - \cot x + c \\
{\text{D}}{\text{. }}\tan x - \cot x - 4x + c \\
\]
Answer
603k+ views
Hint: Here, we will proceed by using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$ and then some basic formulas of trigonometry i.e., ${\left( {\sec x} \right)^2} = 1 + {\left( {\tan x} \right)^2}$ and ${\left( {\text{cosec x}} \right)^2} = 1 + {\left( {\cot x} \right)^2}$ are used in order to evaluate the value of the integral.
Complete Step-by-Step solution:
Let us suppose the integral ${\text{I}} = \int {{{\left( {\tan x - \cot x} \right)}^2}dx} $
Using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, the above integral becomes
$ \Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\cot x} \right)} \right]dx} $
Using the definition of cotangent trigonometric function i.e., $\cot x = \dfrac{1}{{\tan x}}$, we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\dfrac{1}{{\tan x}}} \right)} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} {\text{ }} \to {\text{(1)}} \\
$
As we know that ${\left( {\sec x} \right)^2} = 1 + {\left( {\tan x} \right)^2}$
$ \Rightarrow {\left( {\tan x} \right)^2} = {\left( {\sec x} \right)^2} - 1{\text{ }} \to {\text{(2)}}$
Also we know that ${\left( {\cos ecx} \right)^2} = 1 + {\left( {\cot x} \right)^2}$
$ \Rightarrow {\left( {\cot x} \right)^2} = {\left( {{\text{cosec}}x} \right)^2} - 1{\text{ }} \to {\text{(3)}}$
Using equation (2) and equation (3) in equation (1), we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} - 1 + {{\left( {{\text{cosec}}x} \right)}^2} - 1 - 2} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} + {{\left( {{\text{cosec}}x} \right)}^2} - 4} \right]dx} \\
\Rightarrow {\text{I}} = \int {{{\left( {\sec x} \right)}^2}dx} + \int {{{\left( {{\text{cosec}}x} \right)}^2}dx} - 4\int {dx} \\
\Rightarrow {\text{I}} = \tan x - \cot x - 4x + c \\
$
where c is the constant of integration.
Therefore, the value of the integral $\int {{{\left( {\tan x - \cot x} \right)}^2}dx} $ is equal to $\tan x - \cot x - 4x + c$.
Hence, option D is correct.
Note: In this particular problem, ${\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} $ can only be solved by converting the tangent and cotangent trigonometric terms into secant and cosecant trigonometric terms. Since, the given integral is an indefinite integral (i.e., limits of integration are not there) that’s why we have used the constant of integration.
Complete Step-by-Step solution:
Let us suppose the integral ${\text{I}} = \int {{{\left( {\tan x - \cot x} \right)}^2}dx} $
Using the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$, the above integral becomes
$ \Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\cot x} \right)} \right]dx} $
Using the definition of cotangent trigonometric function i.e., $\cot x = \dfrac{1}{{\tan x}}$, we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2\left( {\tan x} \right)\left( {\dfrac{1}{{\tan x}}} \right)} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} {\text{ }} \to {\text{(1)}} \\
$
As we know that ${\left( {\sec x} \right)^2} = 1 + {\left( {\tan x} \right)^2}$
$ \Rightarrow {\left( {\tan x} \right)^2} = {\left( {\sec x} \right)^2} - 1{\text{ }} \to {\text{(2)}}$
Also we know that ${\left( {\cos ecx} \right)^2} = 1 + {\left( {\cot x} \right)^2}$
$ \Rightarrow {\left( {\cot x} \right)^2} = {\left( {{\text{cosec}}x} \right)^2} - 1{\text{ }} \to {\text{(3)}}$
Using equation (2) and equation (3) in equation (1), we get
$
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} - 1 + {{\left( {{\text{cosec}}x} \right)}^2} - 1 - 2} \right]dx} \\
\Rightarrow {\text{I}} = \int {\left[ {{{\left( {\sec x} \right)}^2} + {{\left( {{\text{cosec}}x} \right)}^2} - 4} \right]dx} \\
\Rightarrow {\text{I}} = \int {{{\left( {\sec x} \right)}^2}dx} + \int {{{\left( {{\text{cosec}}x} \right)}^2}dx} - 4\int {dx} \\
\Rightarrow {\text{I}} = \tan x - \cot x - 4x + c \\
$
where c is the constant of integration.
Therefore, the value of the integral $\int {{{\left( {\tan x - \cot x} \right)}^2}dx} $ is equal to $\tan x - \cot x - 4x + c$.
Hence, option D is correct.
Note: In this particular problem, ${\text{I}} = \int {\left[ {{{\left( {\tan x} \right)}^2} + {{\left( {\cot x} \right)}^2} - 2} \right]dx} $ can only be solved by converting the tangent and cotangent trigonometric terms into secant and cosecant trigonometric terms. Since, the given integral is an indefinite integral (i.e., limits of integration are not there) that’s why we have used the constant of integration.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

