
Find the value of the given: $ \sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}}=\_\_\_\_\_\_. $
A. $ 2\csc \theta $
B. $ \dfrac{2\sin \theta }{\sqrt{\sec \theta }} $
C. $ 2\cos \theta $
D. $ 2\sec \theta $
Answer
549.9k+ views
Hint: We know that $ {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $ .
It should also be observed that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ , $ \sec \theta =\dfrac{1}{\cos \theta } $ and $ \csc \theta =\dfrac{1}{\sin \theta } $ .
Equate the denominators of the expressions and simplify.
Complete step by step answer:
Let us simplify the given expression:
$ \sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}} $
In order to equate the denominators, let's multiply and divide the first term by $ \sec \theta -1 $ and the second term by $ \sec \theta +1 $ :
= $ \sqrt{\dfrac{(\sec \theta -1)(\sec \theta -1)}{(\sec \theta +1)(\sec \theta -1)}}+\sqrt{\dfrac{(\sec \theta +1)(\sec \theta +1)}{(\sec \theta -1)(\sec \theta +1)}} $
Using the identity $ (a+b)(a-b)={{a}^{2}}-{{b}^{2}} $ , we get:
= $ \sqrt{\dfrac{{{(\sec \theta -1)}^{2}}}{{{\sec }^{2}}\theta -1}}+\sqrt{\dfrac{{{(\sec \theta +1)}^{2}}}{{{\sec }^{2}}\theta -1}} $
Now, using the fact that $ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $ and taking the square root, we get:
= $ \dfrac{\sec \theta -1}{\tan \theta }+\dfrac{\sec \theta +1}{\tan \theta } $
= $ \dfrac{\sec \theta -1+\sec \theta +1}{\tan \theta } $
= $ \dfrac{2\sec \theta }{\tan \theta } $
Now, substituting $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ and $ \sec \theta =\dfrac{1}{\cos \theta } $ , we get:
= $ 2\times \dfrac{\dfrac{1}{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }} $
= $ 2\times \dfrac{1}{\cos \theta }\times \dfrac{\cos \theta }{\sin \theta } $
= $ \dfrac{2}{\sin \theta } $
= $ 2\csc \theta $ ... (since $ \csc \theta =\dfrac{1}{\sin \theta } $ )
The correct answer is A. $ 2\csc \theta $ .
Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
$ \sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B} $
$ {{P}^{2}}+{{B}^{2}}={{H}^{2}} $ (Pythagoras' Theorem)
The identities $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ , $ {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $ and $ 1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $ are equivalent to each other and they are a direct result of the Pythagoras' theorem.
It should also be observed that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ , $ \sec \theta =\dfrac{1}{\cos \theta } $ and $ \csc \theta =\dfrac{1}{\sin \theta } $ .
Equate the denominators of the expressions and simplify.
Complete step by step answer:
Let us simplify the given expression:
$ \sqrt{\dfrac{\sec \theta -1}{\sec \theta +1}}+\sqrt{\dfrac{\sec \theta +1}{\sec \theta -1}} $
In order to equate the denominators, let's multiply and divide the first term by $ \sec \theta -1 $ and the second term by $ \sec \theta +1 $ :
= $ \sqrt{\dfrac{(\sec \theta -1)(\sec \theta -1)}{(\sec \theta +1)(\sec \theta -1)}}+\sqrt{\dfrac{(\sec \theta +1)(\sec \theta +1)}{(\sec \theta -1)(\sec \theta +1)}} $
Using the identity $ (a+b)(a-b)={{a}^{2}}-{{b}^{2}} $ , we get:
= $ \sqrt{\dfrac{{{(\sec \theta -1)}^{2}}}{{{\sec }^{2}}\theta -1}}+\sqrt{\dfrac{{{(\sec \theta +1)}^{2}}}{{{\sec }^{2}}\theta -1}} $
Now, using the fact that $ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $ and taking the square root, we get:
= $ \dfrac{\sec \theta -1}{\tan \theta }+\dfrac{\sec \theta +1}{\tan \theta } $
= $ \dfrac{\sec \theta -1+\sec \theta +1}{\tan \theta } $
= $ \dfrac{2\sec \theta }{\tan \theta } $
Now, substituting $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ and $ \sec \theta =\dfrac{1}{\cos \theta } $ , we get:
= $ 2\times \dfrac{\dfrac{1}{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }} $
= $ 2\times \dfrac{1}{\cos \theta }\times \dfrac{\cos \theta }{\sin \theta } $
= $ \dfrac{2}{\sin \theta } $
= $ 2\csc \theta $ ... (since $ \csc \theta =\dfrac{1}{\sin \theta } $ )
The correct answer is A. $ 2\csc \theta $ .
Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
$ \sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B} $
$ {{P}^{2}}+{{B}^{2}}={{H}^{2}} $ (Pythagoras' Theorem)
The identities $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ , $ {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $ and $ 1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $ are equivalent to each other and they are a direct result of the Pythagoras' theorem.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

