
Find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ?
(a) $ \dfrac{1}{2} $
(b) 1
(c) 2
(d) $ -\dfrac{1}{4} $
Answer
537.6k+ views
Hint: We start solving the problem by equating the given limit to L. We then make use of the result $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ to proceed through the problem. We then make the necessary arrangements in the problem and make use of the result $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ to further through the problem. We then make the necessary calculations and use the results $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ to get the required value of the given limit in the problem.
Complete step by step answer:
According to the problem, we are asked to find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ .
Let us assume $ L=\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(1).
We know that $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ . Let us use this result in equation (1).
$ \Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(2).
Now, let us multiply the numerator and denominator of the limit in equation (2) with x.
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x}\times \dfrac{x}{x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2x{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{{{x}^{2}}\tan 4x}\] ---(3).
We know that $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ . Let us use this result in equation (3).
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{2x}{\tan 4x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{1}{2\times \dfrac{\tan 4x}{4x}}\] ---(4).
We know that $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ . Let us use this results in equation (4).
\[\Rightarrow L=\left( 1 \right)\times \left( 1 \right)\times \left( 3+\cos 0 \right)\times \dfrac{1}{2\times 1}\].
\[\Rightarrow L=\left( 3+1 \right)\times \dfrac{1}{2}\].
\[\Rightarrow L=4\times \dfrac{1}{2}\].
\[\Rightarrow L=2\].
So, we have found the value of the given limit as 2.
$ \therefore, $ The correct option for the given problem is (c).
Note:
We should not make calculation mistakes while solving this problem. We should not confuse $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ with $ \displaystyle \lim_{x \to 0}\dfrac{\cos x}{x}=1 $ which is the common mistake done by students. We can also make use of the L-Hospital rule as we can see that the limits tend to give indeterminate form $ \left( \dfrac{0}{0} \right) $ on applying the limit directly. Similarly, we can expect problems to find the value of the limit: $ \displaystyle \lim_{x \to 0}\dfrac{\text{cose}{{\text{c}}^{2}}x}{\left( {{\cot }^{2}}x \right)\left( 4-\sec x \right)} $ .
Complete step by step answer:
According to the problem, we are asked to find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ .
Let us assume $ L=\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(1).
We know that $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ . Let us use this result in equation (1).
$ \Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(2).
Now, let us multiply the numerator and denominator of the limit in equation (2) with x.
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x}\times \dfrac{x}{x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2x{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{{{x}^{2}}\tan 4x}\] ---(3).
We know that $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ . Let us use this result in equation (3).
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{2x}{\tan 4x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{1}{2\times \dfrac{\tan 4x}{4x}}\] ---(4).
We know that $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ . Let us use this results in equation (4).
\[\Rightarrow L=\left( 1 \right)\times \left( 1 \right)\times \left( 3+\cos 0 \right)\times \dfrac{1}{2\times 1}\].
\[\Rightarrow L=\left( 3+1 \right)\times \dfrac{1}{2}\].
\[\Rightarrow L=4\times \dfrac{1}{2}\].
\[\Rightarrow L=2\].
So, we have found the value of the given limit as 2.
$ \therefore, $ The correct option for the given problem is (c).
Note:
We should not make calculation mistakes while solving this problem. We should not confuse $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ with $ \displaystyle \lim_{x \to 0}\dfrac{\cos x}{x}=1 $ which is the common mistake done by students. We can also make use of the L-Hospital rule as we can see that the limits tend to give indeterminate form $ \left( \dfrac{0}{0} \right) $ on applying the limit directly. Similarly, we can expect problems to find the value of the limit: $ \displaystyle \lim_{x \to 0}\dfrac{\text{cose}{{\text{c}}^{2}}x}{\left( {{\cot }^{2}}x \right)\left( 4-\sec x \right)} $ .
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Which scientist proved that even plants have feelings class 10 physics CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

Write any two uses of Plaster of Paris class 10 chemistry CBSE

Five things I will do to build a great India class 10 english CBSE

