
Find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ?
(a) $ \dfrac{1}{2} $
(b) 1
(c) 2
(d) $ -\dfrac{1}{4} $
Answer
546.6k+ views
Hint: We start solving the problem by equating the given limit to L. We then make use of the result $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ to proceed through the problem. We then make the necessary arrangements in the problem and make use of the result $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ to further through the problem. We then make the necessary calculations and use the results $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ to get the required value of the given limit in the problem.
Complete step by step answer:
According to the problem, we are asked to find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ .
Let us assume $ L=\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(1).
We know that $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ . Let us use this result in equation (1).
$ \Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(2).
Now, let us multiply the numerator and denominator of the limit in equation (2) with x.
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x}\times \dfrac{x}{x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2x{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{{{x}^{2}}\tan 4x}\] ---(3).
We know that $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ . Let us use this result in equation (3).
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{2x}{\tan 4x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{1}{2\times \dfrac{\tan 4x}{4x}}\] ---(4).
We know that $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ . Let us use this results in equation (4).
\[\Rightarrow L=\left( 1 \right)\times \left( 1 \right)\times \left( 3+\cos 0 \right)\times \dfrac{1}{2\times 1}\].
\[\Rightarrow L=\left( 3+1 \right)\times \dfrac{1}{2}\].
\[\Rightarrow L=4\times \dfrac{1}{2}\].
\[\Rightarrow L=2\].
So, we have found the value of the given limit as 2.
$ \therefore, $ The correct option for the given problem is (c).
Note:
We should not make calculation mistakes while solving this problem. We should not confuse $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ with $ \displaystyle \lim_{x \to 0}\dfrac{\cos x}{x}=1 $ which is the common mistake done by students. We can also make use of the L-Hospital rule as we can see that the limits tend to give indeterminate form $ \left( \dfrac{0}{0} \right) $ on applying the limit directly. Similarly, we can expect problems to find the value of the limit: $ \displaystyle \lim_{x \to 0}\dfrac{\text{cose}{{\text{c}}^{2}}x}{\left( {{\cot }^{2}}x \right)\left( 4-\sec x \right)} $ .
Complete step by step answer:
According to the problem, we are asked to find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ .
Let us assume $ L=\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(1).
We know that $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ . Let us use this result in equation (1).
$ \Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(2).
Now, let us multiply the numerator and denominator of the limit in equation (2) with x.
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x}\times \dfrac{x}{x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2x{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{{{x}^{2}}\tan 4x}\] ---(3).
We know that $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ . Let us use this result in equation (3).
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{2x}{\tan 4x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{1}{2\times \dfrac{\tan 4x}{4x}}\] ---(4).
We know that $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ . Let us use this results in equation (4).
\[\Rightarrow L=\left( 1 \right)\times \left( 1 \right)\times \left( 3+\cos 0 \right)\times \dfrac{1}{2\times 1}\].
\[\Rightarrow L=\left( 3+1 \right)\times \dfrac{1}{2}\].
\[\Rightarrow L=4\times \dfrac{1}{2}\].
\[\Rightarrow L=2\].
So, we have found the value of the given limit as 2.
$ \therefore, $ The correct option for the given problem is (c).
Note:
We should not make calculation mistakes while solving this problem. We should not confuse $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ with $ \displaystyle \lim_{x \to 0}\dfrac{\cos x}{x}=1 $ which is the common mistake done by students. We can also make use of the L-Hospital rule as we can see that the limits tend to give indeterminate form $ \left( \dfrac{0}{0} \right) $ on applying the limit directly. Similarly, we can expect problems to find the value of the limit: $ \displaystyle \lim_{x \to 0}\dfrac{\text{cose}{{\text{c}}^{2}}x}{\left( {{\cot }^{2}}x \right)\left( 4-\sec x \right)} $ .
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

