Answer
Verified
411.3k+ views
Hint: We start solving the problem by equating the given limit to L. We then make use of the result $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ to proceed through the problem. We then make the necessary arrangements in the problem and make use of the result $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ to further through the problem. We then make the necessary calculations and use the results $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ to get the required value of the given limit in the problem.
Complete step by step answer:
According to the problem, we are asked to find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ .
Let us assume $ L=\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(1).
We know that $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ . Let us use this result in equation (1).
$ \Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(2).
Now, let us multiply the numerator and denominator of the limit in equation (2) with x.
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x}\times \dfrac{x}{x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2x{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{{{x}^{2}}\tan 4x}\] ---(3).
We know that $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ . Let us use this result in equation (3).
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{2x}{\tan 4x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{1}{2\times \dfrac{\tan 4x}{4x}}\] ---(4).
We know that $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ . Let us use this results in equation (4).
\[\Rightarrow L=\left( 1 \right)\times \left( 1 \right)\times \left( 3+\cos 0 \right)\times \dfrac{1}{2\times 1}\].
\[\Rightarrow L=\left( 3+1 \right)\times \dfrac{1}{2}\].
\[\Rightarrow L=4\times \dfrac{1}{2}\].
\[\Rightarrow L=2\].
So, we have found the value of the given limit as 2.
$ \therefore, $ The correct option for the given problem is (c).
Note:
We should not make calculation mistakes while solving this problem. We should not confuse $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ with $ \displaystyle \lim_{x \to 0}\dfrac{\cos x}{x}=1 $ which is the common mistake done by students. We can also make use of the L-Hospital rule as we can see that the limits tend to give indeterminate form $ \left( \dfrac{0}{0} \right) $ on applying the limit directly. Similarly, we can expect problems to find the value of the limit: $ \displaystyle \lim_{x \to 0}\dfrac{\text{cose}{{\text{c}}^{2}}x}{\left( {{\cot }^{2}}x \right)\left( 4-\sec x \right)} $ .
Complete step by step answer:
According to the problem, we are asked to find the value of the given limit: $ \displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ .
Let us assume $ L=\displaystyle \lim_{x \to 0}\dfrac{\left( 1-\cos 2x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(1).
We know that $ 1-\cos ax=2{{\sin }^{2}}\left( \dfrac{ax}{2} \right) $ . Let us use this result in equation (1).
$ \Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x} $ ---(2).
Now, let us multiply the numerator and denominator of the limit in equation (2) with x.
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{x\tan 4x}\times \dfrac{x}{x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\dfrac{\left( 2x{{\sin }^{2}}x \right)\left( 3+\cos x \right)}{{{x}^{2}}\tan 4x}\] ---(3).
We know that $ \displaystyle \lim_{x \to a}\left( pq \right)=\displaystyle \lim_{x \to a}\left( p \right)\times \displaystyle \lim_{x \to a}\left( q \right) $ . Let us use this result in equation (3).
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{2x}{\tan 4x}\].
\[\Rightarrow L=\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)\times \displaystyle \lim_{x \to 0}\left( 3+\cos x \right)\times \displaystyle \lim_{x \to 0}\dfrac{1}{2\times \dfrac{\tan 4x}{4x}}\] ---(4).
We know that $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ and $ \displaystyle \lim_{x \to 0}\dfrac{\tan ax}{ax}=1 $ . Let us use this results in equation (4).
\[\Rightarrow L=\left( 1 \right)\times \left( 1 \right)\times \left( 3+\cos 0 \right)\times \dfrac{1}{2\times 1}\].
\[\Rightarrow L=\left( 3+1 \right)\times \dfrac{1}{2}\].
\[\Rightarrow L=4\times \dfrac{1}{2}\].
\[\Rightarrow L=2\].
So, we have found the value of the given limit as 2.
$ \therefore, $ The correct option for the given problem is (c).
Note:
We should not make calculation mistakes while solving this problem. We should not confuse $ \displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1 $ with $ \displaystyle \lim_{x \to 0}\dfrac{\cos x}{x}=1 $ which is the common mistake done by students. We can also make use of the L-Hospital rule as we can see that the limits tend to give indeterminate form $ \left( \dfrac{0}{0} \right) $ on applying the limit directly. Similarly, we can expect problems to find the value of the limit: $ \displaystyle \lim_{x \to 0}\dfrac{\text{cose}{{\text{c}}^{2}}x}{\left( {{\cot }^{2}}x \right)\left( 4-\sec x \right)} $ .
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
10 examples of evaporation in daily life with explanations
Difference Between Plant Cell and Animal Cell
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE