
Find the value of the following limit.
\[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1-{{r}^{2}}+{{r}^{4}}} \right)}\]
\[\left( a \right)\dfrac{\pi }{4}\]
\[\left( b \right)\dfrac{\pi }{2}\]
\[\left( c \right)\dfrac{3\pi }{4}\]
(d) None of these
Answer
576.6k+ views
Hint: First we will write \[{{\tan }^{-1}}\left( \dfrac{2r}{1-{{r}^{2}}+{{r}^{4}}} \right)\] in the form of \[{{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)\] and use the conversion formula \[{{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)={{\tan }^{-1}}a-{{\tan }^{-1}}b.\] Then we will remove the summation sign and write the terms of \[{{\tan }^{-1}}\] functions. Then we will cancel the like terms. Now, we will evaluate the limit to get the answer.
Complete step-by-step solution:
We have been given the expression: \[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1-{{r}^{2}}+{{r}^{4}}} \right)}.\] Let us assume the value of this expression as ‘E’.
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1-{{r}^{2}}+{{r}^{4}}} \right)}\]
This can be written as
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1+{{r}^{2}}\left( {{r}^{2}}-1 \right)} \right)}\]
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1+{{r}^{2}}\left( r-1 \right)\left( r+1 \right)} \right)}\]
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1+\left( {{r}^{2}}-r \right)\left( {{r}^{2}}+r \right)} \right)}\]
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{\left( {{r}^{2}}+r \right)-\left( {{r}^{2}}-r \right)}{1+\left( {{r}^{2}}-r \right)\left( {{r}^{2}}+r \right)} \right)}\]
The above expression is of the form \[{{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)\] and we know that, \[{{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)={{\tan }^{-1}}a-{{\tan }^{-1}}b.\]
Therefore, the required expression becomes,
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\left[ {{\tan }^{-1}}\left( {{r}^{2}}+r \right)-{{\tan }^{-1}}\left( {{r}^{2}}-r \right) \right]}\]
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\left[ {{\tan }^{-1}}r\left( r+1 \right)-{{\tan }^{-1}}r\left( r-1 \right) \right]}\]
Removing the summation sign, we have,
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\left[ \begin{align}
& \left( {{\tan }^{-1}}1\times 2-{{\tan }^{-1}}1\times 0 \right)+\left( {{\tan }^{-1}}2\times 3-{{\tan }^{-1}}1\times 2 \right)+ \\
& \left( {{\tan }^{-1}}3\times 4-{{\tan }^{-1}}2\times 3 \right)+.....+\left( {{\tan }^{-1}}n\left( n+1 \right)-{{\tan }^{-1}}n\left( n-1 \right) \right) \\
\end{align} \right]\]
Cancelling the like terms, we get,
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\left[ {{\tan }^{-1}}n\left( n+1 \right)-{{\tan }^{-1}}0 \right]\]
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\left[ {{\tan }^{-1}}n\left( n+1 \right) \right]\]
Substituting the value of \[n=\infty ,\] we get,
\[\Rightarrow E={{\tan }^{-1}}\infty \]
Since, \[{{\tan }^{-1}}\infty =\dfrac{\pi }{2},\] we can write
\[\Rightarrow E=\dfrac{\pi }{2}\]
Hence, the value of the given expression is \[\dfrac{\pi }{2}.\]
Therefore, option (b) is the right answer.
Note: One may note that we must not try to convert the tan inverse function in the form of \[{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right).\] This is because its formula is given by \[{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)={{\tan }^{-1}}a+{{\tan }^{-1}}b.\] If we use this conversion then we will not be able to cancel the like terms and finally we will not be able to evaluate the limit.
Complete step-by-step solution:
We have been given the expression: \[\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1-{{r}^{2}}+{{r}^{4}}} \right)}.\] Let us assume the value of this expression as ‘E’.
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1-{{r}^{2}}+{{r}^{4}}} \right)}\]
This can be written as
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1+{{r}^{2}}\left( {{r}^{2}}-1 \right)} \right)}\]
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1+{{r}^{2}}\left( r-1 \right)\left( r+1 \right)} \right)}\]
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{2r}{1+\left( {{r}^{2}}-r \right)\left( {{r}^{2}}+r \right)} \right)}\]
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{{{\tan }^{-1}}\left( \dfrac{\left( {{r}^{2}}+r \right)-\left( {{r}^{2}}-r \right)}{1+\left( {{r}^{2}}-r \right)\left( {{r}^{2}}+r \right)} \right)}\]
The above expression is of the form \[{{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)\] and we know that, \[{{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right)={{\tan }^{-1}}a-{{\tan }^{-1}}b.\]
Therefore, the required expression becomes,
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\left[ {{\tan }^{-1}}\left( {{r}^{2}}+r \right)-{{\tan }^{-1}}\left( {{r}^{2}}-r \right) \right]}\]
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\sum\limits_{r=1}^{n}{\left[ {{\tan }^{-1}}r\left( r+1 \right)-{{\tan }^{-1}}r\left( r-1 \right) \right]}\]
Removing the summation sign, we have,
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\left[ \begin{align}
& \left( {{\tan }^{-1}}1\times 2-{{\tan }^{-1}}1\times 0 \right)+\left( {{\tan }^{-1}}2\times 3-{{\tan }^{-1}}1\times 2 \right)+ \\
& \left( {{\tan }^{-1}}3\times 4-{{\tan }^{-1}}2\times 3 \right)+.....+\left( {{\tan }^{-1}}n\left( n+1 \right)-{{\tan }^{-1}}n\left( n-1 \right) \right) \\
\end{align} \right]\]
Cancelling the like terms, we get,
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\left[ {{\tan }^{-1}}n\left( n+1 \right)-{{\tan }^{-1}}0 \right]\]
\[\Rightarrow E=\underset{n\to \infty }{\mathop{\lim }}\,\left[ {{\tan }^{-1}}n\left( n+1 \right) \right]\]
Substituting the value of \[n=\infty ,\] we get,
\[\Rightarrow E={{\tan }^{-1}}\infty \]
Since, \[{{\tan }^{-1}}\infty =\dfrac{\pi }{2},\] we can write
\[\Rightarrow E=\dfrac{\pi }{2}\]
Hence, the value of the given expression is \[\dfrac{\pi }{2}.\]
Therefore, option (b) is the right answer.
Note: One may note that we must not try to convert the tan inverse function in the form of \[{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right).\] This is because its formula is given by \[{{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right)={{\tan }^{-1}}a+{{\tan }^{-1}}b.\] If we use this conversion then we will not be able to cancel the like terms and finally we will not be able to evaluate the limit.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

