
Find the value of the following integral $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}$
Answer
591.6k+ views
Hint: To solve this integral we will first use the property of definite integral which says $\int\limits_{a}^{b}{f(x)dx=}\int\limits_{a}^{b}{f(a+b-x)}$ hence using this we can further simplify the equation and get the value of integral as \[\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}\]. Now here we will use ${{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab$ to further simplify the equation and convert the terms to $\sin 2x$and $\cos 2x$ with the formula $\sin 2x=2\sin x\cos x$ and ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ after this we will substitute $\cos 2x=t$ and solve the definite integral.
Complete step-by-step answer:
The given integral is $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}$
Now by the property of definite integral we know that $\int\limits_{a}^{b}{f(x)dx=}\int\limits_{a}^{b}{f(a+b-x)}$
Hence we get.
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( 0+\dfrac{\pi }{2}-x \right)\sin \left( 0+\dfrac{\pi }{2}-x \right)\cos \left( 0+\dfrac{\pi }{2}-x \right)}{{{\sin }^{4}}\left( 0+\dfrac{\pi }{2}-x \right)+{{\cos }^{4}}\left( 0+\dfrac{\pi }{2}-x \right)}dx}$
Now we know that $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$ and $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$
Hence we get
$\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( \dfrac{\pi }{2}-x \right)\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\
& =\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{\pi }{2}\cos x\sin x-x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\
\end{align}$
\[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\dfrac{\pi }{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}-\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}\]
\[\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}=\dfrac{\pi }{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\
& \Rightarrow 2\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}=\dfrac{\pi }{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\
\end{align}\]
Let us call \[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}\] as I.
Hence now we have \[I=\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}............(1)\]
Now we know that
$\begin{align}
& {{a}^{2}}+2ab+{{b}^{2}}={{(a+b)}^{2}} \\
& {{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab \\
\end{align}$
Hence using this we get
${{\sin }^{4}}x+{{\cos }^{4}}x={{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x$
Substituting this in (1) we get.
$I=\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{(1)-2{{\sin }^{2}}x{{\cos }^{2}}x}dx}$
Now here we let us multiply the numerator by 2 and divide it by 2.
$I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos x\sin x}{1-2{{\cos }^{2}}x{{\sin }^{2}}x}dx}$
Also in the denominator we multiply by 2 and divide by 2 to the term $2{{\cos }^{2}}x{{\sin }^{2}}x$.
Hence now we get
$I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos x\sin x}{1-\dfrac{4{{\cos }^{2}}x{{\sin }^{2}}x}{2}}dx}$
$\Rightarrow I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos x\sin x}{1-\dfrac{{{(2\sin x\cos x)}^{2}}}{2}}dx}$
Now we know that $\sin 2x=2\sin x\cos x$. Using this formula we get
\[\Rightarrow I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin 2x}{1-\dfrac{{{(\sin 2x)}^{2}}}{2}}dx}\]
Taking LCM in the denominator we get
\[\Rightarrow I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin 2x}{\dfrac{2-({{\sin }^{2}}2x)}{2}}dx}\]
Now we know the trigonometric identity that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ .
\[\begin{align}
& I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\sin 2x}{2-(1-{{\cos }^{2}}2x)}dx} \\
& I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\sin 2x}{2-1+{{\cos }^{2}}2x}dx} \\
& I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\sin 2x}{1+{{\cos }^{2}}2x}dx} \\
\end{align}\]
Now let us substitute $\cos 2x=t$ then we get $-2\sin 2x=dt$
Also note that as
$\begin{align}
& x\to 0,t\to \cos 2(0)=1 \\
& x\to \dfrac{\pi }{2}t\to \cos (2\dfrac{\pi }{2})=\cos \pi =-1 \\
\end{align}$
Hence using this in out integral we get
\[I=\dfrac{\pi }{8}\int\limits_{1}^{-1}{\dfrac{-dt}{1+{{t}^{2}}}dx}\]
We know that the integral $\int{\dfrac{1}{1+{{x}^{2}}}dx}={{\tan }^{-1}}x$.
\[\begin{align}
& I=-\dfrac{\pi }{8}{{[{{\tan }^{-1}}x]}^{-1}}_{1} \\
& I=-\dfrac{\pi }{8}\left[ {{\tan }^{-1}}(-1)-{{\tan }^{-1}}(1) \right] \\
& I=-\dfrac{\pi }{8}\left[ -\dfrac{\pi }{4}-\dfrac{\pi }{4} \right] \\
& I=-\dfrac{\pi }{8}\left[ \dfrac{-\pi }{2} \right] \\
& I=\dfrac{{{\pi }^{2}}}{16} \\
\end{align}\]
Hence we have the value of given integral $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}$ is $\dfrac{{{\pi }^{2}}}{16}$
Note: Now while using method of substitution for integration note that the limits of the integration also change. Hence if we substitute t as for f(x) check and the limits of x are given as a to b. then the new limit for t becomes f(a) to f(b).
Complete step-by-step answer:
The given integral is $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}$
Now by the property of definite integral we know that $\int\limits_{a}^{b}{f(x)dx=}\int\limits_{a}^{b}{f(a+b-x)}$
Hence we get.
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( 0+\dfrac{\pi }{2}-x \right)\sin \left( 0+\dfrac{\pi }{2}-x \right)\cos \left( 0+\dfrac{\pi }{2}-x \right)}{{{\sin }^{4}}\left( 0+\dfrac{\pi }{2}-x \right)+{{\cos }^{4}}\left( 0+\dfrac{\pi }{2}-x \right)}dx}$
Now we know that $\sin \left( \dfrac{\pi }{2}-x \right)=\cos x$ and $\cos \left( \dfrac{\pi }{2}-x \right)=\sin x$
Hence we get
$\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( \dfrac{\pi }{2}-x \right)\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\
& =\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\dfrac{\pi }{2}\cos x\sin x-x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\
\end{align}$
\[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\dfrac{\pi }{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}-\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}\]
\[\begin{align}
& \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}+\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}=\dfrac{\pi }{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\
& \Rightarrow 2\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}=\dfrac{\pi }{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\
& \Rightarrow \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}=\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx} \\
\end{align}\]
Let us call \[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}\] as I.
Hence now we have \[I=\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{{{\cos }^{4}}x+{{\sin }^{4}}x}dx}............(1)\]
Now we know that
$\begin{align}
& {{a}^{2}}+2ab+{{b}^{2}}={{(a+b)}^{2}} \\
& {{a}^{2}}+{{b}^{2}}={{(a+b)}^{2}}-2ab \\
\end{align}$
Hence using this we get
${{\sin }^{4}}x+{{\cos }^{4}}x={{({{\sin }^{2}}x+{{\cos }^{2}}x)}^{2}}-2{{\sin }^{2}}x{{\cos }^{2}}x$
Substituting this in (1) we get.
$I=\dfrac{\pi }{4}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x\sin x}{(1)-2{{\sin }^{2}}x{{\cos }^{2}}x}dx}$
Now here we let us multiply the numerator by 2 and divide it by 2.
$I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos x\sin x}{1-2{{\cos }^{2}}x{{\sin }^{2}}x}dx}$
Also in the denominator we multiply by 2 and divide by 2 to the term $2{{\cos }^{2}}x{{\sin }^{2}}x$.
Hence now we get
$I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos x\sin x}{1-\dfrac{4{{\cos }^{2}}x{{\sin }^{2}}x}{2}}dx}$
$\Rightarrow I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos x\sin x}{1-\dfrac{{{(2\sin x\cos x)}^{2}}}{2}}dx}$
Now we know that $\sin 2x=2\sin x\cos x$. Using this formula we get
\[\Rightarrow I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin 2x}{1-\dfrac{{{(\sin 2x)}^{2}}}{2}}dx}\]
Taking LCM in the denominator we get
\[\Rightarrow I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin 2x}{\dfrac{2-({{\sin }^{2}}2x)}{2}}dx}\]
Now we know the trigonometric identity that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ .
\[\begin{align}
& I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\sin 2x}{2-(1-{{\cos }^{2}}2x)}dx} \\
& I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\sin 2x}{2-1+{{\cos }^{2}}2x}dx} \\
& I=\dfrac{\pi }{8}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\sin 2x}{1+{{\cos }^{2}}2x}dx} \\
\end{align}\]
Now let us substitute $\cos 2x=t$ then we get $-2\sin 2x=dt$
Also note that as
$\begin{align}
& x\to 0,t\to \cos 2(0)=1 \\
& x\to \dfrac{\pi }{2}t\to \cos (2\dfrac{\pi }{2})=\cos \pi =-1 \\
\end{align}$
Hence using this in out integral we get
\[I=\dfrac{\pi }{8}\int\limits_{1}^{-1}{\dfrac{-dt}{1+{{t}^{2}}}dx}\]
We know that the integral $\int{\dfrac{1}{1+{{x}^{2}}}dx}={{\tan }^{-1}}x$.
\[\begin{align}
& I=-\dfrac{\pi }{8}{{[{{\tan }^{-1}}x]}^{-1}}_{1} \\
& I=-\dfrac{\pi }{8}\left[ {{\tan }^{-1}}(-1)-{{\tan }^{-1}}(1) \right] \\
& I=-\dfrac{\pi }{8}\left[ -\dfrac{\pi }{4}-\dfrac{\pi }{4} \right] \\
& I=-\dfrac{\pi }{8}\left[ \dfrac{-\pi }{2} \right] \\
& I=\dfrac{{{\pi }^{2}}}{16} \\
\end{align}\]
Hence we have the value of given integral $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{x\sin x\cos x}{{{\sin }^{4}}x+{{\cos }^{4}}x}dx}$ is $\dfrac{{{\pi }^{2}}}{16}$
Note: Now while using method of substitution for integration note that the limits of the integration also change. Hence if we substitute t as for f(x) check and the limits of x are given as a to b. then the new limit for t becomes f(a) to f(b).
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

