Answer
Verified
423k+ views
Hint: Use the relation ${A^{ - x}} = \dfrac{1}{{{A^x}}}$ to convert the inverse terms into fractions. Use the BODMAS rule to prioritize the order of operations, where B-Brackets, O-Order, D-Division, M-Multiplication, A-Addition and S-Subtraction.
Complete step-by-step solution:
i) Given to us $({3^0} + {4^{ - 1}}) \times {2^2}$. We use the BODMAS rule to solve this expression.
So, according to the BODMAS rule, expressions inside the brackets should be solved first.
We know that any number/expression to the power is equal to $1$ and we can also write ${4^{ - 1}}$ as $\dfrac{1}{4}$
Now, the expression becomes $\left( {1 + \dfrac{1}{4}} \right) \times {2^2}$ . By solving this, we get $\left( {\dfrac{{4 + 1}}{4}} \right) \times 4 = \left( {\dfrac{5}{4}} \right) \times 4$
So the value of the given expression is $5$
ii) We have to solve $({2^{ - 1}} \times {4^{ - 1}}) \div {2^{ - 2}}$ . Firstly, we will convert the inverse values into fraction so the expression becomes $\left( {\dfrac{1}{2} \times \dfrac{1}{4}} \right) \div \dfrac{1}{{{2^2}}}$
Now, we solve the expression inside the brackets so that the expression becomes $\left( {\dfrac{1}{8}} \right) \div \dfrac{1}{{{2^2}}}$
Now this expression can be written as $\dfrac{{\left( {\dfrac{1}{8}} \right)}}{{\left( {\dfrac{1}{4}} \right)}}$ , by solving this we get the value $\dfrac{1}{2}$
Therefore, the value of the given expression is $\dfrac{1}{2}$
iii) To solve this, we have to remove the brackets first. We know that ${A^{ - x}} = \dfrac{1}{{{A^x}}}$ is also true vice verse so the given expression now becomes ${2^2} + {3^2} + {4^2}$
By solving, we get $4 + 9 + 16 = 29$
Hence the value of the given expression is $29$
iv) We already know that any number/expression to the power zero would be one. Therefore the value of the given expression is $1$
v) In the given expression ${\left( {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right)^2}$we have to remove the inverse first so we can write this expression as ${\left( {{{\left( {\dfrac{{ - 3}}{2}} \right)}^2}} \right)^2}$
By solving, we get ${\left( {\dfrac{9}{4}} \right)^2}$
Therefore, the value of the given expression is $\dfrac{{81}}{{16}}$
Note: One might mistake the value of any expression or number to the power zero would be zero, but the value is $1$ and not zero. Note that the BODMAS rule applies for every type of equation/expression and they should only be solved satisfying these rules.
Complete step-by-step solution:
i) Given to us $({3^0} + {4^{ - 1}}) \times {2^2}$. We use the BODMAS rule to solve this expression.
So, according to the BODMAS rule, expressions inside the brackets should be solved first.
We know that any number/expression to the power is equal to $1$ and we can also write ${4^{ - 1}}$ as $\dfrac{1}{4}$
Now, the expression becomes $\left( {1 + \dfrac{1}{4}} \right) \times {2^2}$ . By solving this, we get $\left( {\dfrac{{4 + 1}}{4}} \right) \times 4 = \left( {\dfrac{5}{4}} \right) \times 4$
So the value of the given expression is $5$
ii) We have to solve $({2^{ - 1}} \times {4^{ - 1}}) \div {2^{ - 2}}$ . Firstly, we will convert the inverse values into fraction so the expression becomes $\left( {\dfrac{1}{2} \times \dfrac{1}{4}} \right) \div \dfrac{1}{{{2^2}}}$
Now, we solve the expression inside the brackets so that the expression becomes $\left( {\dfrac{1}{8}} \right) \div \dfrac{1}{{{2^2}}}$
Now this expression can be written as $\dfrac{{\left( {\dfrac{1}{8}} \right)}}{{\left( {\dfrac{1}{4}} \right)}}$ , by solving this we get the value $\dfrac{1}{2}$
Therefore, the value of the given expression is $\dfrac{1}{2}$
iii) To solve this, we have to remove the brackets first. We know that ${A^{ - x}} = \dfrac{1}{{{A^x}}}$ is also true vice verse so the given expression now becomes ${2^2} + {3^2} + {4^2}$
By solving, we get $4 + 9 + 16 = 29$
Hence the value of the given expression is $29$
iv) We already know that any number/expression to the power zero would be one. Therefore the value of the given expression is $1$
v) In the given expression ${\left( {{{\left( {\dfrac{{ - 2}}{3}} \right)}^{ - 2}}} \right)^2}$we have to remove the inverse first so we can write this expression as ${\left( {{{\left( {\dfrac{{ - 3}}{2}} \right)}^2}} \right)^2}$
By solving, we get ${\left( {\dfrac{9}{4}} \right)^2}$
Therefore, the value of the given expression is $\dfrac{{81}}{{16}}$
Note: One might mistake the value of any expression or number to the power zero would be zero, but the value is $1$ and not zero. Note that the BODMAS rule applies for every type of equation/expression and they should only be solved satisfying these rules.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE