
Find the value of the following expressions: ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}$.
Answer
612.3k+ views
Hint: Simplify each of the terms of the given expression using the Binomial theorem which states that for any two numbers ‘x’ and ‘y’, we have ${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+...+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$. Use the fact that $i=\sqrt{-1}$ is a square root of unity to calculate the higher powers of $i$ to further simplify the given expression.
Complete step-by-step solution -
We have to calculate the value of the expression ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}$. We observe that this is an expression with complex numbers.
To simplify the given expression, we will use Binomial Theorem which states that for any two numbers ‘x’ and ‘y’, we have ${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+...+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$.
Substituting $x=1,y=i,n=6$ in the above expression, we have ${{\left( 1+i \right)}^{6}}={}^{6}{{C}_{0}}{{\left( 1 \right)}^{6}}{{\left( i \right)}^{0}}+{}^{6}{{C}_{1}}{{\left( 1 \right)}^{5}}{{\left( i \right)}^{1}}+{}^{6}{{C}_{2}}{{\left( 1 \right)}^{4}}{{\left( i \right)}^{2}}+{}^{6}{{C}_{3}}{{\left( 1 \right)}^{3}}{{\left( i \right)}^{3}}+{}^{6}{{C}_{4}}{{\left( 1 \right)}^{2}}{{\left( i \right)}^{4}}+{}^{6}{{C}_{5}}{{\left( 1 \right)}^{1}}{{\left( i \right)}^{5}}+{}^{6}{{C}_{6}}{{\left( 1 \right)}^{0}}{{\left( i \right)}^{6}}$.
We know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
So, we have ${{\left( 1+i \right)}^{6}}=\dfrac{6!}{0!6!}{{\left( 1 \right)}^{6}}{{\left( i \right)}^{0}}+\dfrac{6!}{1!5!}{{\left( 1 \right)}^{5}}{{\left( i \right)}^{1}}+\dfrac{6!}{2!4!}{{\left( 1 \right)}^{4}}{{\left( i \right)}^{2}}+\dfrac{6!}{3!3!}{{\left( 1 \right)}^{3}}{{\left( i \right)}^{3}}+\dfrac{6!}{2!4!}{{\left( 1 \right)}^{2}}{{\left( i \right)}^{4}}+\dfrac{6!}{1!5!}{{\left( 1 \right)}^{1}}{{\left( i \right)}^{5}}+\dfrac{6!}{0!6!}{{\left( 1 \right)}^{0}}{{\left( i \right)}^{6}}$.
Thus, we can rewrite the above expression as ${{\left( 1+i \right)}^{6}}=1+6i+15{{i}^{2}}+20{{i}^{3}}+15{{i}^{4}}+6{{i}^{5}}+{{i}^{6}}$.
We know that $i=\sqrt{-1}$. Thus, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1,{{i}^{3}}={{i}^{2}}\times i=-i,{{i}^{4}}={{\left( {{i}^{2}} \right)}^{2}}=1,{{i}^{5}}={{i}^{4}}\times i=i,{{i}^{6}}={{i}^{4}}\times {{i}^{2}}=-1$.
Substituting these values in ${{\left( 1+i \right)}^{6}}=1+6i+15{{i}^{2}}+20{{i}^{3}}+15{{i}^{4}}+6{{i}^{5}}+{{i}^{6}}$, we have ${{\left( 1+i \right)}^{6}}=1+6i+15\left( -1 \right)+20\left( -i \right)+15\left( 1 \right)+6\left( i \right)+\left( -1 \right)$.
Thus, we have ${{\left( 1+i \right)}^{6}}=1+6i-15-20i+15+6i-1=-8i.....\left( 1 \right)$.
We will now simplify the expression ${{\left( 1-i \right)}^{3}}$.
Substituting $x=1,y=-i,n=3$ in the formula for Binomial Expansion ${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+...+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$, we have ${{\left( 1-i \right)}^{3}}={}^{3}{{C}_{0}}{{\left( 1 \right)}^{3}}{{\left( -i \right)}^{0}}+{}^{3}{{C}_{1}}{{\left( 1 \right)}^{2}}{{\left( -i \right)}^{1}}+{}^{3}{{C}_{2}}{{\left( 1 \right)}^{1}}{{\left( -i \right)}^{2}}+{}^{3}{{C}_{3}}{{\left( 1 \right)}^{0}}{{\left( -i \right)}^{3}}$.
We know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
So, we have ${{\left( 1-i \right)}^{3}}=\dfrac{3!}{0!3!}{{\left( 1 \right)}^{3}}{{\left( -i \right)}^{0}}+\dfrac{3!}{1!2!}{{\left( 1 \right)}^{2}}{{\left( -i \right)}^{1}}+\dfrac{3!}{2!1!}{{\left( 1 \right)}^{1}}{{\left( -i \right)}^{2}}+\dfrac{3!}{0!3!}{{\left( 1 \right)}^{0}}{{\left( -i \right)}^{3}}$.
Thus, we can rewrite the above expression as ${{\left( 1-i \right)}^{3}}=1+3\left( -i \right)+3{{\left( -i \right)}^{2}}+{{\left( -i \right)}^{3}}$.
We know that $i=\sqrt{-1}$. Thus, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1,{{i}^{3}}={{i}^{2}}\times i=-i$.
Substituting these values in the above expression, we have ${{\left( 1-i \right)}^{3}}=1-3i-3+i$.
Thus, we have ${{\left( 1-i \right)}^{3}}=-2-2i.....\left( 2 \right)$.
Substituting equation (1) and (2) in the expression ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}$, we have ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}=-8i-2-2i$.
Simplifying the above expression, we have ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}=-8i-2-2i=-2-10i=-2\left( 1+5i \right)$.
Hence, the value of the expression ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}$ is $-2-10i=-2\left( 1+5i \right)$.
Note: We can’t solve this question without expanding the expression using the Binomial Theorem and then calculating higher powers of $i=\sqrt{-1}$. We can write any complex number in the form $a+ib$, where $ib$ is the imaginary part and $a$ is the real part.
Complete step-by-step solution -
We have to calculate the value of the expression ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}$. We observe that this is an expression with complex numbers.
To simplify the given expression, we will use Binomial Theorem which states that for any two numbers ‘x’ and ‘y’, we have ${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+...+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$.
Substituting $x=1,y=i,n=6$ in the above expression, we have ${{\left( 1+i \right)}^{6}}={}^{6}{{C}_{0}}{{\left( 1 \right)}^{6}}{{\left( i \right)}^{0}}+{}^{6}{{C}_{1}}{{\left( 1 \right)}^{5}}{{\left( i \right)}^{1}}+{}^{6}{{C}_{2}}{{\left( 1 \right)}^{4}}{{\left( i \right)}^{2}}+{}^{6}{{C}_{3}}{{\left( 1 \right)}^{3}}{{\left( i \right)}^{3}}+{}^{6}{{C}_{4}}{{\left( 1 \right)}^{2}}{{\left( i \right)}^{4}}+{}^{6}{{C}_{5}}{{\left( 1 \right)}^{1}}{{\left( i \right)}^{5}}+{}^{6}{{C}_{6}}{{\left( 1 \right)}^{0}}{{\left( i \right)}^{6}}$.
We know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
So, we have ${{\left( 1+i \right)}^{6}}=\dfrac{6!}{0!6!}{{\left( 1 \right)}^{6}}{{\left( i \right)}^{0}}+\dfrac{6!}{1!5!}{{\left( 1 \right)}^{5}}{{\left( i \right)}^{1}}+\dfrac{6!}{2!4!}{{\left( 1 \right)}^{4}}{{\left( i \right)}^{2}}+\dfrac{6!}{3!3!}{{\left( 1 \right)}^{3}}{{\left( i \right)}^{3}}+\dfrac{6!}{2!4!}{{\left( 1 \right)}^{2}}{{\left( i \right)}^{4}}+\dfrac{6!}{1!5!}{{\left( 1 \right)}^{1}}{{\left( i \right)}^{5}}+\dfrac{6!}{0!6!}{{\left( 1 \right)}^{0}}{{\left( i \right)}^{6}}$.
Thus, we can rewrite the above expression as ${{\left( 1+i \right)}^{6}}=1+6i+15{{i}^{2}}+20{{i}^{3}}+15{{i}^{4}}+6{{i}^{5}}+{{i}^{6}}$.
We know that $i=\sqrt{-1}$. Thus, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1,{{i}^{3}}={{i}^{2}}\times i=-i,{{i}^{4}}={{\left( {{i}^{2}} \right)}^{2}}=1,{{i}^{5}}={{i}^{4}}\times i=i,{{i}^{6}}={{i}^{4}}\times {{i}^{2}}=-1$.
Substituting these values in ${{\left( 1+i \right)}^{6}}=1+6i+15{{i}^{2}}+20{{i}^{3}}+15{{i}^{4}}+6{{i}^{5}}+{{i}^{6}}$, we have ${{\left( 1+i \right)}^{6}}=1+6i+15\left( -1 \right)+20\left( -i \right)+15\left( 1 \right)+6\left( i \right)+\left( -1 \right)$.
Thus, we have ${{\left( 1+i \right)}^{6}}=1+6i-15-20i+15+6i-1=-8i.....\left( 1 \right)$.
We will now simplify the expression ${{\left( 1-i \right)}^{3}}$.
Substituting $x=1,y=-i,n=3$ in the formula for Binomial Expansion ${{\left( x+y \right)}^{n}}={}^{n}{{C}_{0}}{{x}^{n}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+...+{}^{n}{{C}_{n}}{{x}^{0}}{{y}^{n}}$, we have ${{\left( 1-i \right)}^{3}}={}^{3}{{C}_{0}}{{\left( 1 \right)}^{3}}{{\left( -i \right)}^{0}}+{}^{3}{{C}_{1}}{{\left( 1 \right)}^{2}}{{\left( -i \right)}^{1}}+{}^{3}{{C}_{2}}{{\left( 1 \right)}^{1}}{{\left( -i \right)}^{2}}+{}^{3}{{C}_{3}}{{\left( 1 \right)}^{0}}{{\left( -i \right)}^{3}}$.
We know that ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$.
So, we have ${{\left( 1-i \right)}^{3}}=\dfrac{3!}{0!3!}{{\left( 1 \right)}^{3}}{{\left( -i \right)}^{0}}+\dfrac{3!}{1!2!}{{\left( 1 \right)}^{2}}{{\left( -i \right)}^{1}}+\dfrac{3!}{2!1!}{{\left( 1 \right)}^{1}}{{\left( -i \right)}^{2}}+\dfrac{3!}{0!3!}{{\left( 1 \right)}^{0}}{{\left( -i \right)}^{3}}$.
Thus, we can rewrite the above expression as ${{\left( 1-i \right)}^{3}}=1+3\left( -i \right)+3{{\left( -i \right)}^{2}}+{{\left( -i \right)}^{3}}$.
We know that $i=\sqrt{-1}$. Thus, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1,{{i}^{3}}={{i}^{2}}\times i=-i$.
Substituting these values in the above expression, we have ${{\left( 1-i \right)}^{3}}=1-3i-3+i$.
Thus, we have ${{\left( 1-i \right)}^{3}}=-2-2i.....\left( 2 \right)$.
Substituting equation (1) and (2) in the expression ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}$, we have ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}=-8i-2-2i$.
Simplifying the above expression, we have ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}=-8i-2-2i=-2-10i=-2\left( 1+5i \right)$.
Hence, the value of the expression ${{\left( 1+i \right)}^{6}}+{{\left( 1-i \right)}^{3}}$ is $-2-10i=-2\left( 1+5i \right)$.
Note: We can’t solve this question without expanding the expression using the Binomial Theorem and then calculating higher powers of $i=\sqrt{-1}$. We can write any complex number in the form $a+ib$, where $ib$ is the imaginary part and $a$ is the real part.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

