
Find the value of the following:
$\dfrac{{5{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{45}^ \circ } - 4{{\tan }^2}{{30}^ \circ }}}{{2{{\sin }^2}{{30}^ \circ } + \cos {{30}^ \circ } + \tan {{45}^ \circ }}}$.
Answer
615.6k+ views
Hint: Put the value of $\sin {30^ \circ },\cos {30^ \circ },\tan {30^ \circ },\cos {45^ \circ },\tan {45^ \circ }$in the given expression-$\dfrac{{5{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{45}^ \circ } - 4{{\tan }^2}{{30}^ \circ }}}{{2{{\sin }^2}{{30}^ \circ } + \cos {{30}^ \circ } + \tan {{45}^ \circ }}}$, and then solve it to find the answer.
Complete step-by-step answer:
Given expression-
$\dfrac{{5{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{45}^ \circ } - 4{{\tan }^2}{{30}^ \circ }}}{{2{{\sin }^2}{{30}^ \circ } + \cos {{30}^ \circ } + \tan {{45}^ \circ }}}$
Now, we know the values of - \[\sin {30^ \circ } = \dfrac{1}{2},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\tan {45^ \circ } = 1,\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\].
Put these values in the expression given, we get-
$\dfrac{{5{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} - 4{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}}}{{2{{\left( {\dfrac{1}{2}} \right)}^2} + \dfrac{{\sqrt 3 }}{2} + 1}}$.
Solving it further,
$
\dfrac{{5{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} - 4{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}}}{{2{{\left( {\dfrac{1}{2}} \right)}^2} + \dfrac{{\sqrt 3 }}{2} + 1}} \\
= \dfrac{{5\left( {\dfrac{1}{4}} \right) + \dfrac{1}{2} - 4\left( {\dfrac{1}{3}} \right)}}{{2\left( {\dfrac{1}{4}} \right) + \dfrac{{\sqrt 3 }}{2} + 1}} \\
= \dfrac{{\dfrac{5}{4} + \dfrac{1}{2} - \dfrac{4}{3}}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2} + 1}} = \dfrac{{\dfrac{{15 + 6 - 16}}{{12}}}}{{\dfrac{{1 + \sqrt 3 + 2}}{2}}} = \dfrac{5}{{12}} \times \dfrac{2}{{3 + \sqrt 3 }} = \dfrac{5}{6} \times \dfrac{1}{{3 + \sqrt 3 }} \\
$
Multiplying and dividing by $3 - \sqrt 3 $, we get-
$\dfrac{5}{6} \times \dfrac{1}{{3 + \sqrt 3 }} \times \dfrac{{3 - \sqrt 3 }}{{3 - \sqrt 3 }} = \dfrac{{5(3 - \sqrt 3 )}}{{6({3^2} - {{(\sqrt 3 )}^2})}} = \dfrac{{5(3 - \sqrt 3 )}}{{6(9 - 3)}} = \dfrac{{5(3 - \sqrt 3 )}}{{36}}$.
Hence, the expression value is equal to $\dfrac{{5(3 - \sqrt 3 )}}{{36}}$.
Note: Whenever such types of questions appear, then always write down the expression given in the question and then put the values of-\[\sin {30^ \circ } = \dfrac{1}{2},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\tan {45^ \circ } = 1,\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\] in the expression and then step by step solve the equation, at last multiply with the conjugate of $3 + \sqrt 3 $, i.e., $3 - \sqrt 3 $ in numerator and denominator to obtain the final answer.
Complete step-by-step answer:
Given expression-
$\dfrac{{5{{\sin }^2}{{30}^ \circ } + {{\cos }^2}{{45}^ \circ } - 4{{\tan }^2}{{30}^ \circ }}}{{2{{\sin }^2}{{30}^ \circ } + \cos {{30}^ \circ } + \tan {{45}^ \circ }}}$
Now, we know the values of - \[\sin {30^ \circ } = \dfrac{1}{2},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\tan {45^ \circ } = 1,\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\].
Put these values in the expression given, we get-
$\dfrac{{5{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} - 4{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}}}{{2{{\left( {\dfrac{1}{2}} \right)}^2} + \dfrac{{\sqrt 3 }}{2} + 1}}$.
Solving it further,
$
\dfrac{{5{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} - 4{{\left( {\dfrac{1}{{\sqrt 3 }}} \right)}^2}}}{{2{{\left( {\dfrac{1}{2}} \right)}^2} + \dfrac{{\sqrt 3 }}{2} + 1}} \\
= \dfrac{{5\left( {\dfrac{1}{4}} \right) + \dfrac{1}{2} - 4\left( {\dfrac{1}{3}} \right)}}{{2\left( {\dfrac{1}{4}} \right) + \dfrac{{\sqrt 3 }}{2} + 1}} \\
= \dfrac{{\dfrac{5}{4} + \dfrac{1}{2} - \dfrac{4}{3}}}{{\dfrac{1}{2} + \dfrac{{\sqrt 3 }}{2} + 1}} = \dfrac{{\dfrac{{15 + 6 - 16}}{{12}}}}{{\dfrac{{1 + \sqrt 3 + 2}}{2}}} = \dfrac{5}{{12}} \times \dfrac{2}{{3 + \sqrt 3 }} = \dfrac{5}{6} \times \dfrac{1}{{3 + \sqrt 3 }} \\
$
Multiplying and dividing by $3 - \sqrt 3 $, we get-
$\dfrac{5}{6} \times \dfrac{1}{{3 + \sqrt 3 }} \times \dfrac{{3 - \sqrt 3 }}{{3 - \sqrt 3 }} = \dfrac{{5(3 - \sqrt 3 )}}{{6({3^2} - {{(\sqrt 3 )}^2})}} = \dfrac{{5(3 - \sqrt 3 )}}{{6(9 - 3)}} = \dfrac{{5(3 - \sqrt 3 )}}{{36}}$.
Hence, the expression value is equal to $\dfrac{{5(3 - \sqrt 3 )}}{{36}}$.
Note: Whenever such types of questions appear, then always write down the expression given in the question and then put the values of-\[\sin {30^ \circ } = \dfrac{1}{2},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\tan {45^ \circ } = 1,\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}\] in the expression and then step by step solve the equation, at last multiply with the conjugate of $3 + \sqrt 3 $, i.e., $3 - \sqrt 3 $ in numerator and denominator to obtain the final answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

