
Find the value of the following determinant using column and row operations on it and choose the correct alternative$\left| \begin{matrix}
1 & 1 & 1 \\
bc & ca & ab \\
b+c & c+a & a+b \\
\end{matrix} \right|$.
a)1
b)0
c)$\left( a-b \right)\left( b-c \right)\left( c-a \right)$
d)$\left( a+b \right)\left( b+c \right)\left( c+a \right)$
Answer
611.1k+ views
Hint: We will first simplify the given determinant by applying various row and column operations as ${{C}_{2}}\to {{C}_{2}}-{{C}_{1}}$ and then ${{C}_{1}}\to {{C}_{1}}-{{C}_{3}}$ and finally expand the obtained determinant along ${{R}_{1}}$ to get the value of the given determinant.
Complete step-by-step answer:
It is given in the question that we have to find the value of determinant $\left| \begin{matrix}
1 & 1 & 1 \\
bc & ca & ab \\
b+c & c+a & a+b \\
\end{matrix} \right|$. We will first simplify the given determinant by performing the following operations ${{C}_{2}}\to {{C}_{2}}-{{C}_{1}}$ and then ${{C}_{1}}\to {{C}_{1}}-{{C}_{3}}$. Now first applying ${{C}_{2}}\to {{C}_{2}}-{{C}_{1}}$, we get the determinant modified as \[\left| \begin{matrix}
1 & 1-1 & 1 \\
bc & ca-bc & ab \\
b+c & \left( c+a \right)-\left( b+c \right) & a+b \\
\end{matrix} \right|\], that is, \[\left| \begin{matrix}
1 & 0 & 1 \\
bc & c\left( a-b \right) & ab \\
b+c & \left( a-b \right) & a+b \\
\end{matrix} \right|\].
Now, taking $\left( a-b \right)$ common from ${{C}_{2}}$, we get $\left( a-b \right)\left| \begin{matrix}
1 & 0 & 1 \\
bc & c & ab \\
b+c & 1 & a+b \\
\end{matrix} \right|$. Again we apply the column operation as ${{C}_{1}}\to {{C}_{1}}-{{C}_{3}}$, we get $\left( a-b \right)\left| \begin{matrix}
1-1 & 0 & 1 \\
bc-ab & c & ab \\
\left( b+c \right)-\left( a+b \right) & 1 & a+b \\
\end{matrix} \right|$, further solving and simplifying we get $\left( a-b \right)\left| \begin{matrix}
1-1 & 0 & 1 \\
b\left( c-a \right) & c & ab \\
\left( c-a \right) & 1 & a+b \\
\end{matrix} \right|$. Now, taking $\left( c-a \right)$ common from ${{C}_{1}}$ we get $\left( a-b \right)\left( c-a \right)\left| \begin{matrix}
0 & 0 & 1 \\
b & c & ab \\
1 & 1 & a+b \\
\end{matrix} \right|$.
Now expanding the determinant along row ${{R}_{1}}$ we get, $\left( a-b \right)\left( c-a \right)\left[ 1\times \left( b-c \right) \right]$ or simplified as \[\left( a-b \right)\left( b-c \right)\left( c-a \right)\]. Therefore we expanded the determinant to get an expression \[\left( a-b \right)\left( b-c \right)\left( c-a \right)\], therefore option c) is the correct answer.
Note: Usually students directly expand the given determinant directly which is not the correct method to find the value of any determinant. Before expanding any determinant we have to simplify it and try to make our expression as simple as it is possible. Also, while taking common in any row and column we have to keep our eyes on the sign of each term individually. In general, always try to make two zeroes in any of the row or the column using row and column operations, it makes it easy to expand the determinant along the row or column containing maximum number of zeroes.
Complete step-by-step answer:
It is given in the question that we have to find the value of determinant $\left| \begin{matrix}
1 & 1 & 1 \\
bc & ca & ab \\
b+c & c+a & a+b \\
\end{matrix} \right|$. We will first simplify the given determinant by performing the following operations ${{C}_{2}}\to {{C}_{2}}-{{C}_{1}}$ and then ${{C}_{1}}\to {{C}_{1}}-{{C}_{3}}$. Now first applying ${{C}_{2}}\to {{C}_{2}}-{{C}_{1}}$, we get the determinant modified as \[\left| \begin{matrix}
1 & 1-1 & 1 \\
bc & ca-bc & ab \\
b+c & \left( c+a \right)-\left( b+c \right) & a+b \\
\end{matrix} \right|\], that is, \[\left| \begin{matrix}
1 & 0 & 1 \\
bc & c\left( a-b \right) & ab \\
b+c & \left( a-b \right) & a+b \\
\end{matrix} \right|\].
Now, taking $\left( a-b \right)$ common from ${{C}_{2}}$, we get $\left( a-b \right)\left| \begin{matrix}
1 & 0 & 1 \\
bc & c & ab \\
b+c & 1 & a+b \\
\end{matrix} \right|$. Again we apply the column operation as ${{C}_{1}}\to {{C}_{1}}-{{C}_{3}}$, we get $\left( a-b \right)\left| \begin{matrix}
1-1 & 0 & 1 \\
bc-ab & c & ab \\
\left( b+c \right)-\left( a+b \right) & 1 & a+b \\
\end{matrix} \right|$, further solving and simplifying we get $\left( a-b \right)\left| \begin{matrix}
1-1 & 0 & 1 \\
b\left( c-a \right) & c & ab \\
\left( c-a \right) & 1 & a+b \\
\end{matrix} \right|$. Now, taking $\left( c-a \right)$ common from ${{C}_{1}}$ we get $\left( a-b \right)\left( c-a \right)\left| \begin{matrix}
0 & 0 & 1 \\
b & c & ab \\
1 & 1 & a+b \\
\end{matrix} \right|$.
Now expanding the determinant along row ${{R}_{1}}$ we get, $\left( a-b \right)\left( c-a \right)\left[ 1\times \left( b-c \right) \right]$ or simplified as \[\left( a-b \right)\left( b-c \right)\left( c-a \right)\]. Therefore we expanded the determinant to get an expression \[\left( a-b \right)\left( b-c \right)\left( c-a \right)\], therefore option c) is the correct answer.
Note: Usually students directly expand the given determinant directly which is not the correct method to find the value of any determinant. Before expanding any determinant we have to simplify it and try to make our expression as simple as it is possible. Also, while taking common in any row and column we have to keep our eyes on the sign of each term individually. In general, always try to make two zeroes in any of the row or the column using row and column operations, it makes it easy to expand the determinant along the row or column containing maximum number of zeroes.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

