
Find the value of the expression \[\tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 89\].
Answer
575.7k+ views
Hint: We will try to convert tan to its reciprocal value that is cot so that it will easily cancel out with each other and we will get a simplest value that will help us to get the final answer easily. After doing this we will get a finite value left to us which will be the final answer to this question.
$ \tan (90 - x) = \cot x $ where, $ x $ is angle in degrees.
$ \tan x \times \cot x = 1 $
Complete step-by-step answer:
The given expression is:
\[\tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 89\]
\[ = \tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 87 \cdot \tan 88 \cdot \tan 89\]
\[ = \tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan (90 - 3) \cdot \tan (90 - 2) \cdot \tan (90 - 1)\]
\[ = \tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \cot 3 \cdot \cot 2 \cdot \cot 1\] [ $ \because \tan (90 - x) = \cot x $ ]
Rearranging the above expression we get:
\[ = \tan 1 \cdot \cot 1 \cdot \tan 2 \cdot \cot 2 \cdot \tan 3 \cdot \cot 3 \ldots \cdot \tan 45\]
\[ = (\tan 1 \cdot \cot 1) \cdot (\tan 2 \cdot \cot 2) \cdot (\tan 3 \cdot \cot 3) \ldots \cdot (\tan 45)\]
\[ = 1 \cdot (\tan 45) = \tan 45\] [ $ \because \tan x \times \cot x = 1 $ ]
\[ = 1\] [ $ \because \tan 45 = 1 $ ]
Therefor the value of \[\tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 89\] is \[1\]
Note: Notice carefully that we are converting tan angles to cot angles up to a certain terms so that they cancel with each other. We should remember all the trigonometry values and functions so that easily we can get these answers.
$ \tan (90 - x) = \cot x $ where, $ x $ is angle in degrees.
$ \tan x \times \cot x = 1 $
Complete step-by-step answer:
The given expression is:
\[\tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 89\]
\[ = \tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 87 \cdot \tan 88 \cdot \tan 89\]
\[ = \tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan (90 - 3) \cdot \tan (90 - 2) \cdot \tan (90 - 1)\]
\[ = \tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \cot 3 \cdot \cot 2 \cdot \cot 1\] [ $ \because \tan (90 - x) = \cot x $ ]
Rearranging the above expression we get:
\[ = \tan 1 \cdot \cot 1 \cdot \tan 2 \cdot \cot 2 \cdot \tan 3 \cdot \cot 3 \ldots \cdot \tan 45\]
\[ = (\tan 1 \cdot \cot 1) \cdot (\tan 2 \cdot \cot 2) \cdot (\tan 3 \cdot \cot 3) \ldots \cdot (\tan 45)\]
\[ = 1 \cdot (\tan 45) = \tan 45\] [ $ \because \tan x \times \cot x = 1 $ ]
\[ = 1\] [ $ \because \tan 45 = 1 $ ]
Therefor the value of \[\tan 1 \cdot \tan 2 \cdot \tan 3 \ldots \cdot \tan 89\] is \[1\]
Note: Notice carefully that we are converting tan angles to cot angles up to a certain terms so that they cancel with each other. We should remember all the trigonometry values and functions so that easily we can get these answers.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

