
Find the value of the expression \[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^2}\].
Answer
564.9k+ views
Hint: In these questions we will make use of the formula if \[a + b + c = 0\] then \[{a^3} + {b^3} + {c^3} = 3abc\], and here remember that \[ - {a^3}\] can be rewritten as \[{\left( { - a} \right)^3}\] i.e., \[ - {a^3} = {\left( { - a} \right)^3}\], and further simplify to get the required answer.
Complete step-by-step answer:
Given expression is \[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^2}\],
Here as we know that \[ - {a^3}\] can be rewritten as \[{\left( { - a} \right)^3}\]i.e., \[ - {a^3} = {\left( { - a} \right)^3}\] so, here \[ - {\left( {0.3} \right)^3}\] can be rewritten as \[{\left( { - 0.3} \right)^3}\], so the given expression becomes,
$\Rightarrow$ \[{\left( {0.2} \right)^3} + {\left( { - 0.3} \right)^3} + {\left( {0.1} \right)^2}\]
Now using the formula if \[a + b + c = 0\] then \[{a^3} + {b^3} + {c^3} = 3abc\], now first we have to find the value of a+b+c , so here
$\Rightarrow$ \[a = 0.2\], \[b = - 0.3\] and \[c = 0.1\], substituting the values we get,
$\Rightarrow$ \[a + b + c = 0.2 - 0.3 + 0.1\],
Now simplifying we get,
\[a + b + c = 0\], so condition is satisfied we can now use the formula, if \[a + b + c = 0\] then \[{a^3} + {b^3} + {c^3} = 3abc\],
Now substituting the values in the second formula, we get
$\Rightarrow$ \[{a^3} + {b^3} + {c^3} = 3abc\],
Now substituting the values of a, b and c we get,
\[ \Rightarrow {\left( {0.2} \right)^3} + {\left( { - 0.3} \right)^3} + {\left( {0.1} \right)^3} = 3\left( {0.2} \right)\left( { - 0.3} \right)\left( {0.1} \right)\],
Now further multiplying we get,
\[ \Rightarrow {\left( {0.2} \right)^3} + {\left( { - 0.3} \right)^3} + {\left( {0.1} \right)^3} = 3\left( { - 0.06} \right)\left( {0.1} \right)\],
Now again multiplying we get,
\[ \Rightarrow {\left( {0.2} \right)^3} + {\left( { - 0.3} \right)^3} + {\left( {0.1} \right)^3} = 3\left( { - 0.006} \right)\],
Finally multiplying we get,
\[ \Rightarrow {\left( {0.2} \right)^3} + {\left( { - 0.3} \right)^3} + {\left( {0.1} \right)^3} = - 0.018\]
\[\therefore \]The value of \[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^3} = - 0.018\].
Note:
These types of questions can also be solved by directly using cubes of the given numbers as it is not mentioned whether we should only use the formula or we should only use the cubes. So this can be solved in another method by evaluating cubes i.e.,
Given, \[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^3}\],
Now evaluating the cubes of each term we get,
$\Rightarrow$ \[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^3} = 0.008 - 0.027 + 0.001\]
So now simplifying R.H.S we get,
$\Rightarrow$\[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^3} = 0.009 - 0.027\],
Again simplifying we get,
$\Rightarrow$\[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^3} = - 0.018\].
So in both the cases we got the same answer, so it is up to the question what is asked and if it is not specified in the question it is up to the students which method to be used and what formula to be used to solve these types of questions.
Complete step-by-step answer:
Given expression is \[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^2}\],
Here as we know that \[ - {a^3}\] can be rewritten as \[{\left( { - a} \right)^3}\]i.e., \[ - {a^3} = {\left( { - a} \right)^3}\] so, here \[ - {\left( {0.3} \right)^3}\] can be rewritten as \[{\left( { - 0.3} \right)^3}\], so the given expression becomes,
$\Rightarrow$ \[{\left( {0.2} \right)^3} + {\left( { - 0.3} \right)^3} + {\left( {0.1} \right)^2}\]
Now using the formula if \[a + b + c = 0\] then \[{a^3} + {b^3} + {c^3} = 3abc\], now first we have to find the value of a+b+c , so here
$\Rightarrow$ \[a = 0.2\], \[b = - 0.3\] and \[c = 0.1\], substituting the values we get,
$\Rightarrow$ \[a + b + c = 0.2 - 0.3 + 0.1\],
Now simplifying we get,
\[a + b + c = 0\], so condition is satisfied we can now use the formula, if \[a + b + c = 0\] then \[{a^3} + {b^3} + {c^3} = 3abc\],
Now substituting the values in the second formula, we get
$\Rightarrow$ \[{a^3} + {b^3} + {c^3} = 3abc\],
Now substituting the values of a, b and c we get,
\[ \Rightarrow {\left( {0.2} \right)^3} + {\left( { - 0.3} \right)^3} + {\left( {0.1} \right)^3} = 3\left( {0.2} \right)\left( { - 0.3} \right)\left( {0.1} \right)\],
Now further multiplying we get,
\[ \Rightarrow {\left( {0.2} \right)^3} + {\left( { - 0.3} \right)^3} + {\left( {0.1} \right)^3} = 3\left( { - 0.06} \right)\left( {0.1} \right)\],
Now again multiplying we get,
\[ \Rightarrow {\left( {0.2} \right)^3} + {\left( { - 0.3} \right)^3} + {\left( {0.1} \right)^3} = 3\left( { - 0.006} \right)\],
Finally multiplying we get,
\[ \Rightarrow {\left( {0.2} \right)^3} + {\left( { - 0.3} \right)^3} + {\left( {0.1} \right)^3} = - 0.018\]
\[\therefore \]The value of \[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^3} = - 0.018\].
Note:
These types of questions can also be solved by directly using cubes of the given numbers as it is not mentioned whether we should only use the formula or we should only use the cubes. So this can be solved in another method by evaluating cubes i.e.,
Given, \[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^3}\],
Now evaluating the cubes of each term we get,
$\Rightarrow$ \[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^3} = 0.008 - 0.027 + 0.001\]
So now simplifying R.H.S we get,
$\Rightarrow$\[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^3} = 0.009 - 0.027\],
Again simplifying we get,
$\Rightarrow$\[{\left( {0.2} \right)^3} - {\left( {0.3} \right)^3} + {\left( {0.1} \right)^3} = - 0.018\].
So in both the cases we got the same answer, so it is up to the question what is asked and if it is not specified in the question it is up to the students which method to be used and what formula to be used to solve these types of questions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

