
Find the value of the expression $\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }$
Answer
613.2k+ views
Hint: Use the fact that \[\cos \left( 90{}^\circ -x \right)=\sin x,\sin \left( 90{}^\circ -x \right)=\cos x\] and ${{\cos }^{2}}x+{{\sin }^{2}}x=1$. Observe that $75{}^\circ =90{}^\circ -15{}^\circ $ and $54{}^\circ =90{}^\circ -36{}^\circ $. Hence write $\sin \left( 75{}^\circ \right)$ as $\sin \left( 90{}^\circ -15{}^\circ \right)$ and $\cos \left( 54{}^\circ \right)$ as $\cos \left( 90{}^\circ -36{}^\circ \right)$. Hence use the above formal to simplify the expression.
Complete step-by-step solution -
Trigonometric ratios:
There are six trigonometric ratios defined on an angle of a right-angled triangle, viz sine, cosine,
tangent, cotangent, secant and cosecant.
The sine of an angle is defined as the ratio of the opposite side to the hypotenuse.
The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse.
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side.
The cotangent of an angle is defined as the ratio of the adjacent side to the opposite side.
The secant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
The cosecant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
Consider a right-angled triangle ABC, right-angled at A. Let $\angle B=15{}^\circ $.
Now, we have
$\angle A+\angle B+\angle C=180{}^\circ $ (angle sum property of a triangle)
Hence we have
$90{}^\circ +15{}^\circ +\angle C=180{}^\circ \Rightarrow \angle C=75{}^\circ $
Hence ${{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ ={{\sin }^{2}}B+{{\sin }^{2}}C$
Now $\sin B=\dfrac{AC}{BC}$ and $\sin C=\dfrac{AB}{BC}$
Hence ${{\sin }^{2}}B+{{\sin }^{2}}C=\dfrac{A{{C}^{2}}}{B{{C}^{2}}}+\dfrac{A{{B}^{2}}}{B{{C}^{2}}}=\dfrac{A{{C}^{2}}+A{{B}^{2}}}{B{{C}^{2}}}$
Since ABC is a right-angled triangle, by Pythagoras theorem, we have
$A{{C}^{2}}+A{{B}^{2}}=B{{C}^{2}}$
Hence ${{\sin }^{2}}B+{{\sin }^{2}}C=1$
Again consider a triangle ABC, with $\angle B=36{}^\circ $
Hence $\angle A+\angle B+\angle C=180{}^\circ $
Substituting the value of $\angle A$ and $\angle B$, we get
$90{}^\circ +36{}^\circ +\angle C=180{}^\circ \Rightarrow \angle C=54{}^\circ $
Hence ${{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ ={{\cos }^{2}}B+{{\cos }^{2}}C$
We have $\cos B=\dfrac{AB}{BC}$ and $\cos C=\dfrac{AC}{BC}$
Hence ${{\cos }^{2}}B+{{\cos }^{2}}C=\dfrac{A{{B}^{2}}}{B{{C}^{2}}}+\dfrac{A{{C}^{2}}}{B{{C}^{2}}}=\dfrac{A{{B}^{2}}+A{{C}^{2}}}{B{{C}^{2}}}=1$
Hence we have
$\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{1}{1}=1$
Note: Alternatively, we have
$\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}\left( 90{}^\circ -15{}^\circ \right)}{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}\left( 90{}^\circ -36{}^\circ \right)}$
We know that \[\cos \left( 90{}^\circ -x \right)=\sin x\] and \[\sin \left( 90{}^\circ -x \right)=\cos x\]
Using the above formulae, we get
$\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{{{\sin }^{2}}15{}^\circ +{{\cos }^{2}}15{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\sin }^{2}}36{}^\circ }$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Hence, we have
$\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{1}{1}=1$
Complete step-by-step solution -
Trigonometric ratios:
There are six trigonometric ratios defined on an angle of a right-angled triangle, viz sine, cosine,
tangent, cotangent, secant and cosecant.
The sine of an angle is defined as the ratio of the opposite side to the hypotenuse.
The cosine of an angle is defined as the ratio of the adjacent side to the hypotenuse.
The tangent of an angle is defined as the ratio of the opposite side to the adjacent side.
The cotangent of an angle is defined as the ratio of the adjacent side to the opposite side.
The secant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
The cosecant of an angle is defined as the ratio of the hypotenuse to the adjacent side.
Consider a right-angled triangle ABC, right-angled at A. Let $\angle B=15{}^\circ $.
Now, we have
$\angle A+\angle B+\angle C=180{}^\circ $ (angle sum property of a triangle)
Hence we have
$90{}^\circ +15{}^\circ +\angle C=180{}^\circ \Rightarrow \angle C=75{}^\circ $
Hence ${{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ ={{\sin }^{2}}B+{{\sin }^{2}}C$
Now $\sin B=\dfrac{AC}{BC}$ and $\sin C=\dfrac{AB}{BC}$
Hence ${{\sin }^{2}}B+{{\sin }^{2}}C=\dfrac{A{{C}^{2}}}{B{{C}^{2}}}+\dfrac{A{{B}^{2}}}{B{{C}^{2}}}=\dfrac{A{{C}^{2}}+A{{B}^{2}}}{B{{C}^{2}}}$
Since ABC is a right-angled triangle, by Pythagoras theorem, we have
$A{{C}^{2}}+A{{B}^{2}}=B{{C}^{2}}$
Hence ${{\sin }^{2}}B+{{\sin }^{2}}C=1$
Again consider a triangle ABC, with $\angle B=36{}^\circ $
Hence $\angle A+\angle B+\angle C=180{}^\circ $
Substituting the value of $\angle A$ and $\angle B$, we get
$90{}^\circ +36{}^\circ +\angle C=180{}^\circ \Rightarrow \angle C=54{}^\circ $
Hence ${{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ ={{\cos }^{2}}B+{{\cos }^{2}}C$
We have $\cos B=\dfrac{AB}{BC}$ and $\cos C=\dfrac{AC}{BC}$
Hence ${{\cos }^{2}}B+{{\cos }^{2}}C=\dfrac{A{{B}^{2}}}{B{{C}^{2}}}+\dfrac{A{{C}^{2}}}{B{{C}^{2}}}=\dfrac{A{{B}^{2}}+A{{C}^{2}}}{B{{C}^{2}}}=1$
Hence we have
$\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{1}{1}=1$
Note: Alternatively, we have
$\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}\left( 90{}^\circ -15{}^\circ \right)}{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}\left( 90{}^\circ -36{}^\circ \right)}$
We know that \[\cos \left( 90{}^\circ -x \right)=\sin x\] and \[\sin \left( 90{}^\circ -x \right)=\cos x\]
Using the above formulae, we get
$\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{{{\sin }^{2}}15{}^\circ +{{\cos }^{2}}15{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\sin }^{2}}36{}^\circ }$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$. Hence, we have
$\dfrac{{{\sin }^{2}}15{}^\circ +{{\sin }^{2}}75{}^\circ }{{{\cos }^{2}}36{}^\circ +{{\cos }^{2}}54{}^\circ }=\dfrac{1}{1}=1$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

