
Find the value of the expression $\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)$ is
[a] $\sqrt{2}\sin x$
[b] $\sqrt{2}\cos x$
[c] $\sin x$
[d] $\cos x$
Answer
607.2k+ views
Hint: Use the identity $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ and $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$. Hence determine the value of $\cos \left( 60{}^\circ -x \right)$ and of $\cos \left( 60{}^\circ +x \right)$. Add the two expressions to get the value of $\cos \left( 60{}^\circ -x \right)+\cos \left( 60{}^\circ +x \right)$. Alternatively use the fact that $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. Hence determine the value of the expression $\cos \left( 60{}^\circ -x \right)+\cos \left( 60{}^\circ +x \right)$.
Complete step-by-step answer:
We know that $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$.
Put $A=60{}^\circ $ and $B=x$, we get
$\cos \left( 60{}^\circ -x \right)=\cos 60{}^\circ \cos x+\sin \left( 60{}^\circ \right)\sin x$
We know that $\cos 60{}^\circ =\dfrac{1}{2}$ and $\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}$
Hence, we have
$\cos \left( 60{}^\circ -x \right)=\dfrac{\cos x}{2}+\dfrac{\sqrt{3}}{2}\sin x\text{ }\left( i \right)$
Also, we know that
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$
Put $A=60{}^\circ $ and $B=x$, we get
$\cos \left( 60{}^\circ +x \right)=\cos 60{}^\circ \cos x-\sin \left( 60{}^\circ \right)\sin x$
We know that $\cos 60{}^\circ =\dfrac{1}{2}$ and $\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}$
Hence, we have
$\cos \left( 60{}^\circ +x \right)=\dfrac{\cos x}{2}-\dfrac{\sqrt{3}}{2}\sin x\text{ }\left( ii \right)$
Adding equation(i) and equation (ii), we get
$\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x+\dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x=\cos x$
Hence, we have
$\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=\cos x$ \[\]
Hence option [d] is correct.
Note: Alternative Solution:
We know that
$\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Put A = 60+x and B = 60-x, we get
$\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=2\cos \left( \dfrac{60{}^\circ +x+60{}^\circ -x}{2} \right)\cos \left( \dfrac{60{}^\circ +x-60{}^\circ +x}{2} \right)$
Hence, we have
$\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=2\cos x\cos 60{}^\circ $
We know that $\cos 60{}^\circ =\dfrac{1}{2}$
Hence, we have
$\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=2\times \dfrac{1}{2}\cos x=\cos x$, which is the same as obtained above.
Hence option [d] is correct.
Complete step-by-step answer:
We know that $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$.
Put $A=60{}^\circ $ and $B=x$, we get
$\cos \left( 60{}^\circ -x \right)=\cos 60{}^\circ \cos x+\sin \left( 60{}^\circ \right)\sin x$
We know that $\cos 60{}^\circ =\dfrac{1}{2}$ and $\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}$
Hence, we have
$\cos \left( 60{}^\circ -x \right)=\dfrac{\cos x}{2}+\dfrac{\sqrt{3}}{2}\sin x\text{ }\left( i \right)$
Also, we know that
$\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$
Put $A=60{}^\circ $ and $B=x$, we get
$\cos \left( 60{}^\circ +x \right)=\cos 60{}^\circ \cos x-\sin \left( 60{}^\circ \right)\sin x$
We know that $\cos 60{}^\circ =\dfrac{1}{2}$ and $\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}$
Hence, we have
$\cos \left( 60{}^\circ +x \right)=\dfrac{\cos x}{2}-\dfrac{\sqrt{3}}{2}\sin x\text{ }\left( ii \right)$
Adding equation(i) and equation (ii), we get
$\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=\dfrac{1}{2}\cos x-\dfrac{\sqrt{3}}{2}\sin x+\dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x=\cos x$
Hence, we have
$\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=\cos x$ \[\]
Hence option [d] is correct.
Note: Alternative Solution:
We know that
$\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
Put A = 60+x and B = 60-x, we get
$\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=2\cos \left( \dfrac{60{}^\circ +x+60{}^\circ -x}{2} \right)\cos \left( \dfrac{60{}^\circ +x-60{}^\circ +x}{2} \right)$
Hence, we have
$\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=2\cos x\cos 60{}^\circ $
We know that $\cos 60{}^\circ =\dfrac{1}{2}$
Hence, we have
$\cos \left( 60{}^\circ +x \right)+\cos \left( 60{}^\circ -x \right)=2\times \dfrac{1}{2}\cos x=\cos x$, which is the same as obtained above.
Hence option [d] is correct.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

